MAST31005 Algebra II exercise 0 (17.01.2024)

These exercises do not count towards the course grade. The purpose is to recall relevant concepts from the prerequisite courses Algebraic structures I and II.

1. Recall the definitions of the following concepts: ring, ideal, ring homomorphism, zero divisor, field, field homomorphism, kernel of a homomorphism, irreducible polynomial.
2. Show that a subfield K of the complex numbers \mathbb{C} contains the rationals \mathbb{Q}.
3. Let R be a ring and $I \subset R$ an ideal. Let R / I be the quotient, i.e. the set of cosets of the form $r+I, r \in R$.
(a) Show that the operations

$$
(r+I)+(s+I)=(r+s)+I \quad \text { and } \quad(r+I) \cdot(s+I)=r s+I
$$

are well defined and equip R / I with a ring structure.
(b) Show that the quotient projection

$$
\pi: R \rightarrow R / I, \quad \pi(r)=r+I
$$

is a ring homomorphism.
4. Why is the polynomial ring $\mathbb{C}[t]$ not a field?
5. Consider the finite field $\mathbb{F}_{3}=\{0,1,2\}$ where addition and multiplication are defined modulo 3. Give an example of two polynomials $p, q \in \mathbb{F}_{3}[t]$ such that $p \neq q$ but $p(i)=q(i)$ for all $i \in \mathbb{F}_{3}$.

Recall the Rational Root Theorem: if a polynomial

$$
f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{0} \in \mathbb{Z}[t], \quad a_{n} \neq 0
$$

has a rational root $f(p / q)=0$ with $p, q \in \mathbb{Z}$ coprime, then $p \mid a_{0}$ and $q \mid a_{n}$.
6. Let $f(t)=t^{3}+2 t^{2}+t+2$.
(a) Find the rational roots of f.
(b) Give a non-trivial factorization of f in $\mathbb{Q}[t]$.
7. Let $f(t)=t^{4}+t^{3}+3 t^{2}+2 t+2$.
(a) Show that f has no rational roots.
(b) Is f irreducible in $\mathbb{Q}[t]$?

