MAST31005 Algebra II exercise 1 (24.01.2024)

1. Let $K \hookrightarrow L$ be a field extension. Verify the details omitted in the lectures that L is a vector space over K.
2. Let $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be the fraction field in the indeterminates x_{1}, \ldots, x_{n} and let $\alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{C}. Show that the field extension $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ consists of

$$
\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left\{\frac{p\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{q\left(\alpha_{1}, \ldots, \alpha_{n}\right)}: \frac{p}{q} \in \mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

3. Let K be a subfield of \mathbb{C}. Let $\alpha \in \mathbb{C}$ be algebraic over K and let $p \in K[t]$ be the minimal polynomial of α. If $\operatorname{deg}(p)=1$, show that $\alpha \in K$.
4. Find the minimal polynomial of $1+i \in \mathbb{C}$ over \mathbb{Q}.
5. Show that $[\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}): \mathbb{Q}]=4$.
6. Show that $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q}. You may assume that we know $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. Hint: consider a \mathbb{Q}-linear relation $a+b \sqrt{2}+c \sqrt{3}+$ $d \sqrt{6}=0$. Argue that a nontrivial relation would have to have either $c \neq 0$ or $d \neq 0$. Use this assumption to write $\sqrt{3}$ in the form $\sqrt{3}=f+g \sqrt{2}$ with $f, g \in \mathbb{Q}$ and derive a contradiction.
7. Let K be a subfield of \mathbb{C} and $p \in K[t]$ an irreducible polynomial. Let $\alpha \in \mathbb{C}$ be some root of p. Does p factorize into linear terms over $K(\alpha)$? Hint: consider $K=\mathbb{Q}$, $\alpha=\sqrt[3]{2} \in \mathbb{R}$.
