MAST31005 Algebra II exercise 10 (10.04.2024)

1. Let $I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Show that if I is radical, then

$$
V(I: J)=\overline{V(I) \backslash V(J)}
$$

2. Let $V, W \subset K^{n}$ be varieties. Show that $I(V): I(W)=I(V \backslash W)$
3. Let $I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ be ideals.
(a) Show that $I: K\left[x_{1}, \ldots, x_{n}\right]=I$.
(b) Show that $J \subset I$ if and only if $I: J=K\left[x_{1}, \ldots, x_{n}\right]$.
(c) Show that $J \subset \sqrt{I}$ if and only if $I: J^{\infty}=K\left[x_{1}, \ldots, x_{n}\right]$.
(d) Give a geometric interpretation of (c) for the corresponding varieties.
4. Let $H, I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ be ideals.
(a) Show that $I J \subset H$ if and only if $I \subset H: J$.
(b) Show that $(I: J): H=I:(J H)$.
5. Show that an ideal I is prime if and only if for any ideals J, H

$$
J H \subset I \Longrightarrow J \subset I \text { or } H \subset I .
$$

6. Let $p=x^{2} z-6 y^{4}+2 x y^{3} z \in K[x, y, z]$. Show that there exist polynomials $q_{1}, q_{2}, q_{3} \in K[x, y, z]$ such that

$$
p=(x+3) \cdot q_{1}+(y-1) \cdot q_{2}+(z-2) \cdot q_{3} .
$$

7. Let K be a field which is not algebraically closed.
(a) Let $p \in K[x]$ be an irreducible polynomial with no roots. Show that $\langle p\rangle \subset K[x]$ is maximal.
(b) Show that if $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ is maximal, then $V(I)$ is empty or a singleton.
(c) Show that for each $n \geq 1$, there exists a maximal ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with $V(I)=\emptyset$. Hint: consider $I=\left\langle x_{1}, \ldots, x_{n-1}, p\left(x_{n}\right)\right\rangle$ with p as in (a).
8. Let $I \subsetneq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a proper ideal. Show that \sqrt{I} is the intersection of all maximal ideals containing I. What is the corresponding geometric statement for varieties?
