MAST31005 Algebra II exercise 12 (24.04.2024)

1. Let K be an infinite field.
(a) Show that the coordinate ring $K[V]$ of the variety $V=K$ and the polynomial ring $K[x]$ are isomorphic rings.
(b) Show that the coordinate ring $K[V]$ of the variety $V=K^{n}$ and the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ are isomorphic rings.
(c) What goes wrong when K is not infinite?
2. (a) Show that $\phi(x, y, z)=\left(2 x^{2}+y^{2}, z^{2}-y^{3}+3 x z\right)$ and $\psi(x, y, z)=\left(2 y+x z, 3 y^{2}\right)$ represent the same polynomial mapping $V\left(y-x^{2}, z-x^{3}\right) \rightarrow \mathbb{R}^{2}$.
(b) Find another representation of this same polynomial mapping with all components in the same univariate polynomial ring.
3. Let $V=V(y-x) \subset \mathbb{R}^{2}$. Let $\phi: V \rightarrow \mathbb{R}^{3}$ be a polynomial mapping represented by $\phi(x, y)=\left(x^{2}-y, y^{2}, x-3 y^{2}\right)$. The image $W=\phi(V) \subset \mathbb{R}^{3}$ is a variety. Find a system of equations defining the variety W.
4. Let $W=V\left(y^{2}-x^{3}+x\right) \subset \mathbb{R}^{2}$. Show that there are no non-constant polynomial mappings $\mathbb{R} \rightarrow W$ using the following argument (or any other argument!).
(a) Let $\phi: \mathbb{R} \rightarrow W$ be a polynomial mapping represented by $\phi(t)=(a(t), b(t))$. Show that $b(t)^{2}=a(t)\left(a(t)^{2}-1\right)$.
(b) Show that the factors $a(t)$ and $a(t)^{2}-1$ must be relatively prime in $\mathbb{R}[t]$.
(c) Using factorizations of a and b into irreducibles, show that $b^{2}=a c^{2}$ for some $c \in \mathbb{R}[t]$ with a and c relatively prime.
(d) Deduce that $c^{2}=a^{2}-1$ implies that a, b, and c must be constant polynomials.
5. Let $V=V\left(y-x^{n}, z-x^{m}\right) \subset K^{3}$, where $n, m \geq 1$ are arbitrary positive integers. Show that V is isomorphic to K by constucting explicit inverse polynomial mappings $\alpha: K \rightarrow V$ and $\beta: V \rightarrow K$.
6. Let $V \subset K^{n}$ be a variety defined as a graph of a polynomial mapping $p: K^{n-1} \rightarrow$ K, i.e. V defined by the equation $x_{n}-p\left(x_{1}, \ldots, x_{n-1}\right)=0$. Show that V is isomorphic to K^{n-1}.
7. Let $I=\left\langle x_{3}-x_{1}^{2}, x_{4}-x_{1} x_{2}, x_{2} x_{4}-x_{1} x_{5}, x_{4}^{2}-x_{3} x_{5}\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{5}\right]$ and $V=$ $V(I) \subset \mathbb{C}^{5}$.
(a) Find a collection of monomials such that their \mathbb{C}-linear span is isomorphic to $K[V]$ as a \mathbb{C}-vector space.
(b) For which $i \in\{1, \ldots, 5\}$ does there exist $m_{i} \geq 0$ such that $x_{i}^{m_{i}} \in I$?
(c) Is V finite?
