MAST31005 Algebra II exercise 12 (24.04.2024)

- **1.** Let K be an infinite field.
- (a) Show that the coordinate ring K[V] of the variety V = K and the polynomial ring K[x] are isomorphic rings.
- (b) Show that the coordinate ring K[V] of the variety $V = K^n$ and the polynomial ring $K[x_1, \ldots, x_n]$ are isomorphic rings.
- (c) What goes wrong when K is not infinite?
- 2. (a) Show that $\phi(x, y, z) = (2x^2 + y^2, z^2 y^3 + 3xz)$ and $\psi(x, y, z) = (2y + xz, 3y^2)$ represent the same polynomial mapping $V(y x^2, z x^3) \to \mathbb{R}^2$.
- (b) Find another representation of this same polynomial mapping with all components in the same univariate polynomial ring.

3. Let $V = V(y - x) \subset \mathbb{R}^2$. Let $\phi: V \to \mathbb{R}^3$ be a polynomial mapping represented by $\phi(x, y) = (x^2 - y, y^2, x - 3y^2)$. The image $W = \phi(V) \subset \mathbb{R}^3$ is a variety. Find a system of equations defining the variety W.

4. Let $W = V(y^2 - x^3 + x) \subset \mathbb{R}^2$. Show that there are no non-constant polynomial mappings $\mathbb{R} \to W$ using the following argument (or any other argument!).

- (a) Let $\phi \colon \mathbb{R} \to W$ be a polynomial mapping represented by $\phi(t) = (a(t), b(t))$. Show that $b(t)^2 = a(t)(a(t)^2 - 1)$.
- (b) Show that the factors a(t) and $a(t)^2 1$ must be relatively prime in $\mathbb{R}[t]$.
- (c) Using factorizations of a and b into irreducibles, show that $b^2 = ac^2$ for some $c \in \mathbb{R}[t]$ with a and c relatively prime.
- (d) Deduce that $c^2 = a^2 1$ implies that a, b, and c must be constant polynomials.

5. Let $V = V(y - x^n, z - x^m) \subset K^3$, where $n, m \ge 1$ are arbitrary positive integers. Show that V is isomorphic to K by constructing explicit inverse polynomial mappings $\alpha \colon K \to V$ and $\beta \colon V \to K$.

6. Let $V \subset K^n$ be a variety defined as a graph of a polynomial mapping $p: K^{n-1} \to K$, i.e. V defined by the equation $x_n - p(x_1, \ldots, x_{n-1}) = 0$. Show that V is isomorphic to K^{n-1} .

7. Let $I = \langle x_3 - x_1^2, x_4 - x_1x_2, x_2x_4 - x_1x_5, x_4^2 - x_3x_5 \rangle \subset \mathbb{C}[x_1, \dots, x_5]$ and $V = V(I) \subset \mathbb{C}^5$.

- (a) Find a collection of monomials such that their \mathbb{C} -linear span is isomorphic to K[V] as a \mathbb{C} -vector space.
- (b) For which $i \in \{1, \ldots, 5\}$ does there exist $m_i \ge 0$ such that $x_i^{m_i} \in I$?
- (c) Is V finite?