MAST31005 Algebra II exercise 13 (02.05.2024)

1. Let $I=\left\langle x^{2}-2 x y-4 x+2 y z+6 y-3 z, y^{2}-2 y z-2 y+3 z, z^{2}-z\right\rangle$. Show that I is zero dimensional and find the points of $V(I)$. What does the tree-structure of expanding partial solutions into full solutions as in Example 10.19 look like?
2. Let $V \subset \mathbb{C}^{n}$ be a nonempty variety and $\phi \in \mathbb{C}[V]$. Show that $V_{V}(\phi)=\emptyset$ if and only if $1 / \phi \in \mathbb{C}[V]$, i.e., there exists $\psi \in \mathbb{C}[V]$ such that $\phi \psi=1$.
3. Let $\alpha: V \rightarrow W$ and $\beta: W \rightarrow V$ be inverse polynomial mappings. Let $U=V_{V}(I)$ for some ideal $I \subset K[V]$. Find an ideal $J \subset K[W]$ such that $\alpha(U)=V_{W}(J)$.
4. Let $V=V(x y-1) \subset \mathbb{C}^{2}$ and $W=V(x y z-1) \subset \mathbb{C}^{3}$. Find non-constant rational mappings $\phi: V \rightarrow W$ and $\psi: W \rightarrow \mathbb{C}$ such that the composition $\psi \circ \phi$ is not defined.
5. Show that $V\left(x^{2}+y^{2}+z^{2}-1\right) \subset \mathbb{R}^{3}$ and \mathbb{R}^{2} are birationally equivalent via the stereographic projection

$$
(x, y, z) \mapsto\left(\frac{x}{1-z}, \frac{y}{1-z}\right)
$$

and its inverse

$$
(u, v) \mapsto\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) .
$$

6. Show that $V\left(y^{2}-x^{3}\right) \subset K^{2}$ and K are birationally equivalent.
