MAST31005 Algebra II exercise 2 (31.01.2024)

1. Let $K \subset \mathbb{C}$ be a subfield. Let $p, q \in K[t]$ and $\alpha \in \mathbb{C}$ be such that $p(\alpha)=0=q(\alpha)$. Show that there exists a polynomial $f \in K[t]$ such that $\operatorname{deg} f \geq 1$ and $f \mid p$ and $f \mid q$.
2. Let $K \hookrightarrow L$ be a finite extension, and p an irreducible polynomial over K. Suppose $\operatorname{deg} p$ does not divide $[L: K]$. Show that p has no roots in L.
3. Let $K \subset \mathbb{C}$ be a subfield and $0 \neq \alpha \in \mathbb{C}$ algebraic over K.
(a) Show that the minimal polynomial $m \in K[t]$ of α satisfies $m(0) \neq 0$.
(b) Let $p \in K[t]$ be a monic polynomial with $\operatorname{deg} p \geq 1$. Show that the companion matrix $C(p)$ is invertible if and only if $p(0) \neq 0$.
(c) Conclude that there exists an invertible matrix $A \in K^{n \times n}$ with eigenvalue α.
4. Let $K \hookrightarrow L$ be a field extension with $[L: K]=2$. Show that $L=K(\alpha)$ for some element $\alpha \in L$ with $\alpha^{2} \in K$.
5. Show that the field of algebraic numbers $\overline{\mathbb{Q}} \subset \mathbb{C}$ has no nontrivial finite extensions.
6. Let $\alpha=\sqrt[4]{2}$ and $\beta=\sqrt[20]{2}$ with minimal polynomials $p_{\alpha}=t^{4}-2$ and $p_{\beta}=t^{20}-2$ over \mathbb{Q}. Let $A=C\left(p_{\alpha}\right) \in \mathbb{Q}^{4 \times 4}$ and $B=C\left(p_{\beta}\right) \in \mathbb{Q}^{20 \times 20}$ be the respective companion matrices. Let $f=\operatorname{det}(t I-A \otimes B) \in \mathbb{Q}[t]$ be the characteristic polynomial of the Kronecker product $A \otimes B \in \mathbb{Q}^{80 \times 80}$. Show that f is not the minimal polynomial of the product $\alpha \beta$.
7. The map

$$
\Phi: \mathbb{Q}[t] \times \mathbb{Q}[t] \rightarrow \mathbb{Q}[t], \quad \Phi(p, q)=\operatorname{det}(t I-C(p) \otimes I-I \otimes C(q))
$$

has the "sum of roots" property: if $\alpha \in \mathbb{C}$ is a root of $p \in \mathbb{Q}[t]$ and $\beta \in \mathbb{C}$ is a root of $q \in \mathbb{Q}[t]$, then $\alpha+\beta \in \mathbb{C}$ is a root of $\Phi(p, q) \in \mathbb{Q}[t]$.

Let $S \subset \mathbb{Q}[t]$ be the subset of all irreducible polynomials. Show that there cannot exist a map $\Psi: S \times S \rightarrow S$ with the "sum of roots" property.

