MAST31005 Algebra II exercise 4 (14.02.2024)

1. Define 'revlex' order for $\alpha, \beta \in \mathbb{N}^{n}$ by
$\alpha>\beta \quad \Longleftrightarrow \quad$ the right-most nonzero entry of $\alpha-\beta$ is negative
Show that revlex is not a monomial order.
2. Consider on $K\left[x_{1}, \ldots, x_{8}\right]$ the wdegrevlex order with weights $(1,1,2,3,3,4,4,4)$. List all of the monomials of weighted degree 4 in increasing order.
3. Let $>_{x}$ be a monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$ and let $>_{y}$ be a monomial order on $K\left[y_{1}, \ldots, y_{m}\right]$. Define the product order $>_{x y}$ on $K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ by

$$
x^{\alpha} y^{\beta}>_{x y} x^{\gamma} y^{\delta} \Longleftrightarrow x^{\alpha}>_{x} x^{\gamma} \quad \text { or } \quad\left\{\begin{array}{l}
\alpha=\gamma, \text { and } \\
y^{\beta}>_{y} y^{\delta}
\end{array}\right.
$$

(a) Show that $>_{x y}$ is a monomial order.
(b) Is the lex order on $K[x, y]$ the product order of the canonical orders on $K[x]$ and $K[y]$?
4. Compute the remainder of polynomial division for $f=x^{4} y^{2}+x^{2} y^{2}-y+1$ divided by the ordered tuple P with respect to the lex order on $\mathbb{Q}[x, y]$ when
(a) $P=\left(x y^{2}-x, x-y^{3}\right)$
(b) $P=\left(x-y^{3}, x y^{2}-x\right)$
5. Let $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal and let $>$ be a monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$. Let $\beta=\min \left\{\alpha: x^{\alpha} \in I\right\}$. Show that $\beta \in A$.
6. Let $I=\left\langle x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal. Show that $f \in I$ if and only if multivariate polynomial division of f by the tuple $\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right)$ gives a zero remainder.
7. Let $I=\left\langle x^{6}, x^{2} y^{3}, y^{7}\right\rangle \subset \mathbb{Q}[x, y]$.
(a) Draw a visualization of the exponents $(m, n) \in \mathbb{N}^{2}$ of the monomials $x^{m} y^{n} \in I$.
(b) If we divide $f \in \mathbb{Q}[x, y]$ by the tuple $\left(x^{6}, x^{2} y^{3}, y^{7}\right)$, which monomials can appear in the remainder?
(c) Compute the dimension of the quotient $\mathbb{Q}[x, y] / I$ as a vector space over \mathbb{Q}.

