MAST31005 Algebra II exercise 5 (21.02.2024)

1. Prove the following ascending/descending chain conditions or give a counterexample:
(a) DCC for ideals: If $K\left[x_{1}, \ldots, x_{n}\right] \supset I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ ideals, then $I_{N}=I_{N+1}=\ldots$ for some $N \geq 1$.
(b) ACC for varieties: If $V_{1} \subset V_{2} \subset V_{3} \subset \cdots \subset K^{n}$ varieties, then $V_{N}=V_{N+1}=\ldots$ for some $N \geq 1$.
(c) DCC for varieties: If $K^{n} \supset V_{1} \supset V_{2} \supset V_{3} \supset \ldots$ varieties, then $V_{N}=V_{N+1}=\ldots$ for some $N \geq 1$.

Hint: For varieties, consider the ideal $I(V)$. For counterexamples it suffices to consider the univariate case $K[x]$.
2. Let $V \subset K^{n}$ be a variety. Let $W=V(I(V))$ be the variety of the ideal of the variety V. Show that $W=V$.
3. Let $I=\langle p\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]$. Show that $\{p\}$ is a Gröbner basis of I with respect to any monomial order.
4. Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and $G \subset I$ a basis such that for all $f \in I$ the remainder of division by G is $\bar{f}^{G}=0$. Show that G is a Gröbner basis of I.
5. Let $A=\left(a_{i j}\right) \in K^{m \times n}$ be a matrix in row echelon form. Let $g_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomials given by the rows of A. Show that there is a monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$ such that $\left\{g_{1}, \ldots, g_{m}\right\}$ is a Gröbner basis of the ideal $\left\langle g_{1}, \ldots, g_{m}\right\rangle$.
6. Consider lex order on $\mathbb{R}[x, y, z]$ and let $g_{1}=x+z$ and $g_{2}=y+z$.
(a) Using Buchberger's criterion, verify that g_{1}, g_{2} is a Gröbner basis of $\left\langle g_{1}, g_{2}\right\rangle$.
(b) Show that the division algorithm gives different polynomials q_{1}, q_{2} when dividing $x y$ by $\left(g_{1}, g_{2}\right)$ or by $\left(g_{2}, g_{1}\right)$.
7. Compute a Gröbner basis for $I=\left\langle y^{2}+x, y^{4}+2 x y^{2}+x^{2}+3\right\rangle$ in the deglex order. What can you deduce about the variety $V(I)$?
8. Let $V=\left\{\left(b_{1}, a_{1}\right), \ldots,\left(b_{n}, a_{n}\right)\right\} \subset K^{2}$ with $a_{i} \neq a_{j}$ for $i \neq j$. Consider the polynomial with roots a_{i}

$$
f=\prod_{i=1}^{n}\left(x-a_{i}\right) \in K[x]
$$

and the Lagrange interpolation polynomial

$$
h=\sum_{i=1}^{n} b_{i} \prod_{j \neq i} \frac{x-a_{j}}{a_{i}-a_{j}} \in K[x] .
$$

(a) Show that h is the unique polynomial in $K[x]$ with deg $h \leq n-1$ and $h\left(a_{i}\right)=b_{i}$.
(b) Show that $\{f, y-h\} \subset K[y, x]$ is a Gröbner basis for $I(V) \subset K[y, x]$ in the lex order.

