MAST31005 Algebra II exercise 6 (28.02.2024)

For computations, use of a computer algebra system is recommended. When using a CAS, explain which system you used, how you implemented the problem (math-tocomputer translation), and how you interpreted the output (computer-to-math translation).

1. Is
$$f = xy^3 - z^2 + y^5 - z^3$$
 contained in the ideal $I = \langle -x^3 + y, x^2y - z \rangle$?

2. Find all the points of the variety

$$V(x^{2} + y^{2} + z^{2} - 1, x^{2} + y^{2} + z^{2} - 2x, 2x - 3y - z) \subset \mathbb{C}^{3}.$$

3. Find all the points of the variety

$$V(x^2y - z^3, 2xy - 4z - 1, -y^2 + z, x^3 - 4yz) \subset \mathbb{C}^3.$$

4. Suppose $a, b, c \in \mathbb{C}$ are such that

$$a+b+c=3\tag{1}$$

$$a^2 + b^2 + c^2 = 5 (2)$$

$$a^3 + b^3 + c^3 = 7 \tag{3}$$

Show that

(i)
$$a^4 + b^4 + c^4 = 9$$
,

- (ii) $a^5 + b^5 + c^5 \neq 11$.
- (iii) What is the value of $a^6 + b^6 + c^6 \in \mathbb{C}$?

5. In exercise 4, instead of \mathbb{C} consider a subfield $K \subset \mathbb{C}$. For which subfields $K \subset \mathbb{C}$ does one or both of the implications

$$\begin{array}{c} (1), (2), (3) \implies (i) \\ (1), (2), (3) \implies (ii) \end{array}$$

hold for all $(a, b, c) \in K^3$? For which subfields K does the answer of (iii) make sense?

- 6. Let $I = \langle x^2 + y + z 1, x + y^2 + z 1, x + y + z^2 1 \rangle$.
- (a) Show that the given generators of I are not a Gröbner basis for any lex order (i.e. for any of the 6 possible orderings of indeterminates: x > y > z, or x > z > y, or...)
- (b) Find a monomial order for which the leading terms of the generators are coprime.
- (c) Deduce that the generators are a Gröbner basis for the monomial order of (b).

7. For each of the following ideals $I \subset \mathbb{Q}[x, y, z]$, find the reduced Gröbner basis for the degrevlex and lex orders. Compare the number of basis elements and their complexity (e.g. total degree, maximal coefficients).

(a) $I = \langle x^5 + y^4 + z^3 - 1, x^3 + y^2 + z^2 - 1 \rangle$ (b) $I = \langle x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1 \rangle$