MAST31005 Algebra II exercise 6 (28.02.2024)

For computations, use of a computer algebra system is recommended. When using a CAS, explain which system you used, how you implemented the problem (math-tocomputer translation), and how you interpreted the output (computer-to-math translation).

1. Is $f=x y^{3}-z^{2}+y^{5}-z^{3}$ contained in the ideal $I=\left\langle-x^{3}+y, x^{2} y-z\right\rangle$?
2. Find all the points of the variety

$$
V\left(x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}+z^{2}-2 x, 2 x-3 y-z\right) \subset \mathbb{C}^{3} .
$$

3. Find all the points of the variety

$$
V\left(x^{2} y-z^{3}, 2 x y-4 z-1,-y^{2}+z, x^{3}-4 y z\right) \subset \mathbb{C}^{3} .
$$

4. Suppose $a, b, c \in \mathbb{C}$ are such that

$$
\begin{align*}
a+b+c & =3 \tag{1}\\
a^{2}+b^{2}+c^{2} & =5 \tag{2}\\
a^{3}+b^{3}+c^{3} & =7 \tag{3}
\end{align*}
$$

Show that
(i) $a^{4}+b^{4}+c^{4}=9$,
(ii) $a^{5}+b^{5}+c^{5} \neq 11$.
(iii) What is the value of $a^{6}+b^{6}+c^{6} \in \mathbb{C}$?
5. In exercise 4, instead of \mathbb{C} consider a subfield $K \subset \mathbb{C}$. For which subfields $K \subset \mathbb{C}$ does one or both of the implications

$$
\begin{aligned}
& (1),(2),(3) \Longrightarrow(\text { ii }) \\
& (11),(2),(3) \Longrightarrow \text { (iii) }
\end{aligned}
$$

hold for all $(a, b, c) \in K^{3}$? For which subfields K does the answer of (iiii) make sense?
6. Let $I=\left\langle x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right\rangle$.
(a) Show that the given generators of I are not a Gröbner basis for any lex order (i.e. for any of the 6 possible orderings of indeterminates: $x>y>z$, or $x>z>y$, or...)
(b) Find a monomial order for which the leading terms of the generators are coprime.
(c) Deduce that the generators are a Gröbner basis for the monomial order of (b).
7. For each of the following ideals $I \subset \mathbb{Q}[x, y, z]$, find the reduced Gröbner basis for the degrevlex and lex orders. Compare the number of basis elements and their complexity (e.g. total degree, maximal coefficients).
(a) $I=\left\langle x^{5}+y^{4}+z^{3}-1, x^{3}+y^{2}+z^{2}-1\right\rangle$
(b) $I=\left\langle x^{5}+y^{4}+z^{3}-1, x^{3}+y^{3}+z^{2}-1\right\rangle$

