MAST31005 Algebra II exercise 7 (13.03.2024)

1. Let $I \subset \mathbb{C}[x, y, z]$ be the ideal determined by the polynomial system

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =4 \\
x^{2}+2 y^{2} & =5 \\
x z & =1 .
\end{aligned}
$$

(a) Find bases for the elimination ideals I_{1} and I_{2}.
(b) How many rational solutions does the system have?
2. Call a monomial order $>$ on $K\left[x_{1}, \ldots, x_{n}\right]$ of l-elimination type if any monomial involving any of x_{1}, \ldots, x_{l} is greater than all monomials in $K\left[x_{l+1}, \ldots, x_{n}\right]$.
(a) Define a monomial order $>$ that is of l-elimination type and restricts to degrevlex on both $K\left[x_{1}, \ldots, x_{l}\right]$ and $K\left[x_{l+1}, \ldots, x_{n}\right]$.
(b) Let G be a Gröbner basis of an ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a monomial order of l-elimination type. Show that $G \cap K\left[x_{l+1}, \ldots, x_{n}\right]$ is a Gröbner basis of the elimination ideal $I_{l}=I \cap K\left[x_{l+1}, \ldots, x_{n}\right]$.
3. The Whitney umbrella $W \subset \mathbb{R}^{3}$ is given parametrically by

$$
\begin{aligned}
& x=u v, \\
& y=v, \\
& z=u^{2} .
\end{aligned}
$$

(a) Find the smallest variety $V \subset \mathbb{R}^{3}$ containing the Whitney umbrella W.
(b) Show that $W \neq V$.
(c) Find all the points $(x, y, z) \in W$ for which the parameters $u, v \in \mathbb{R}$ are not uniquely determined. Explain how this is seen in the above picture.
4. Let $J=\left\langle x^{2}+y^{2}-1, y-1\right\rangle \subset \mathbb{R}[x, y]$.
(a) Draw the varieties $V\left(x^{2}+y^{2}-1\right), V(y-1)$, and $V(J)$ in the plane \mathbb{R}^{2}.
(b) Find $f \in I(V(J))$ such that $f \notin J$.

