MAST31005 Algebra II exercise 8 (20.03.2024)

1. Show that each variety $V \subset \mathbb{R}^{n}$ can be defined by a single equation, i.e., show that $V=V(p)$ for some $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
2. Let K be a field which is not algebraically closed. Let $p=a_{n} x^{n}+\ldots+a_{0} \in K[x]$. Define the homogenization of p to be the homogeneous polynomial

$$
p_{\mathrm{hom}}=a_{n} x^{n}+a_{n-1} x^{n-1} y+a_{n-2} x^{n-2} y^{2}+\ldots+a_{0} y^{n} \in K[x, y] .
$$

(a) Show that p has a root in K if and only if $p_{\text {hom }}(a, b)=0$ for some $0 \neq(a, b) \in K^{2}$.
(b) Show that there exists $q \in K[x, y]$ such that $V(q)=\{(0,0)\}$.
(c) Show that for each $n \geq 1$, there exists a polynomial $q_{n} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $V\left(q_{n}\right)=\{(0, \ldots, 0)\}$.
(d) Let $W=V\left(p_{1}, \ldots, p_{s}\right) \subset K^{n}$ be a variety. Show that $W=V(f)$, where $f=q_{n}\left(p_{1}, \ldots, p_{s}\right)$. Compare this to Exercise 1 .
3. Let K be an arbitrary field and let

$$
S=\left\{p \in K\left[x_{1}, \ldots, x_{n}\right]: p(a) \neq 0 \forall a \in K^{n}\right\}
$$

be the subset of polynomials with no zeros. Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal such that $I \cap S=\emptyset$. Show that $V(I) \neq \emptyset$. Hint: when K is not algebraically closed, use Exercise 2
4. Define ideals $I, J \subset \mathbb{C}[x, y]$ such that $I \not \subset J$ and $J \not \subset I$, but $V(I)=V(J) \neq \emptyset$.
5. Show that $\left\langle x^{2}+1\right\rangle \subset \mathbb{R}[x]$ is a radical ideal, but $V\left(x^{2}+1\right)=\emptyset$.
6. (a) Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal such that $\sqrt{I}=\left\langle p_{1}, p_{2}\right\rangle$ with $p_{1}^{m_{1}} \in I$ and $p_{2}^{m_{2}} \in I$. Show that $q^{m_{1}+m_{2}-1} \in I$ for all $q \in \sqrt{I}$. Hint: look at the proof in Lemma 9.6 that $p, q \in \sqrt{I} \Longrightarrow p+q \in \sqrt{I}$.
(b) Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be any ideal. Show that there exists $M \in \mathbb{N}$ such that $q^{M} \in I$ for all $q \in \sqrt{I}$.
7. (a) Let $I=\left\langle x^{3}, y^{3}, x y(x+y)\right\rangle \subset K[x, y]$. Is $x+y \in \sqrt{I}$? If so, what is the smallest power such that $(x+y)^{m} \in I$?
(b) Let $I=\left\langle x+z, x^{2} y, x-z^{2}\right\rangle \subset K[x, y]$. Is $x^{2}+3 x z \in \sqrt{I}$? If so, what is the smallest power such that $\left(x^{2}+3 x z\right)^{m} \in I$?
8. (a) Show that $\sqrt{\left\langle x^{n}, y^{m}\right\rangle}=\langle x, y\rangle \subset K[x, y]$ for all $n, m \geq 1$.
(b) Let $p, q \in K[x, y]$ and $I=\left\langle p^{2}, q^{3}\right\rangle$. Is it always true that $\sqrt{I}=\langle p, q\rangle$?

