MAST31005 Algebra II exercise 9 (27.03.2024)

- **1.** Let I_1, \ldots, I_m and J be ideals of $K[x_1, \ldots, x_n]$.
- (a) Show that $(I_1 + \ldots + I_m)J = I_1J + \ldots + I_mJ$.
- (b) Show that $(I_1 \cdots I_m)^r = I_1^r \cdots I_m^r$ for r = 1, 2, 3, ...
- **2.** Give examples of radical ideals $I, J \subset K[x_1, \ldots, x_n]$ such that
- (a) I + J is not radical.
- (b) IJ is not radical.
- **3.** Let $I, J \subset K[x_1, \ldots, x_n]$ be radical ideals. Show that $\sqrt{IJ} = I \cap J$.
- **4.** Ideals $I, J \subset K[x_1, \ldots, x_n]$ are said to be *comaximal* if $I + J = K[x_1, \ldots, x_n]$.
- (a) For $K = \mathbb{C}$, show that I and J are comaximal if and only if $V(I) \cap V(J) = \emptyset$.
- (b) For some other field $K \neq \mathbb{C}$, give a counterexample to the equivalence in (a).
- (c) If I and J are comaximal, show that $IJ = I \cap J$.
- 5. Find the Zariski closures of the following sets:
- (a) The projection of the hyperbola $V(xy-1) \subset \mathbb{R}^2$ onto the x-axis.
- (b) The boundary of the first quadrant $\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$.
- (c) The ball $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$
- **6.** Let $I = \langle xy + y \rangle$ and $J = \langle xy y \rangle$ in $\mathbb{R}[x, y]$.
- (a) Determine $I \cap J = (tI + (1-t)J) \cap \mathbb{R}[x, y]$.
- (b) Show that $V(I \cap J)$ is the union of three lines L_1, L_2, L_3 .
- (c) Show that $V(tI + (1 t)J) \subset \mathbb{R}^3$ is a union of lines \tilde{L}_1, \tilde{L}_2 and a plane \tilde{L}_3 with projections $\pi_1(\tilde{L}_i) = L_i, i = 1, 2, 3$, to the *xy*-plane.
- (d) Let $(x, y) \in L_i$. For each i = 1, 2, 3, describe what information can be seen in the range of possible values for the *t*-coordinate such that $(t, x, y) \in V(tI + (1-t)J)$.

7. Let $p = 40x^2 - 174xy + 189y^2$ and $q = 40x^2 + 6xy - 189y^2$. Find $h \in \mathbb{Q}[x, y]$ such that $\langle h \rangle = \langle p \rangle \cap \langle q \rangle$ and compute gcd(p, q) = pq/h.