MAST31005 Algebra II exercise 9 (27.03.2024)

1. Let I_{1}, \ldots, I_{m} and J be ideals of $K\left[x_{1}, \ldots, x_{n}\right]$.
(a) Show that $\left(I_{1}+\ldots+I_{m}\right) J=I_{1} J+\ldots+I_{m} J$.
(b) Show that $\left(I_{1} \cdots I_{m}\right)^{r}=I_{1}^{r} \cdots I_{m}^{r}$ for $r=1,2,3, \ldots$
2. Give examples of radical ideals $I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ such that
(a) $I+J$ is not radical.
(b) $I J$ is not radical.
3. Let $I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ be radical ideals. Show that $\sqrt{I J}=I \cap J$.
4. Ideals $I, J \subset K\left[x_{1}, \ldots, x_{n}\right]$ are said to be comaximal if $I+J=K\left[x_{1}, \ldots, x_{n}\right]$.
(a) For $K=\mathbb{C}$, show that I and J are comaximal if and only if $V(I) \cap V(J)=\emptyset$.
(b) For some other field $K \neq \mathbb{C}$, give a counterexample to the equivalence in (a).
(c) If I and J are comaximal, show that $I J=I \cap J$.
5. Find the Zariski closures of the following sets:
(a) The projection of the hyperbola $V(x y-1) \subset \mathbb{R}^{2}$ onto the x-axis.
(b) The boundary of the first quadrant $\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\}$.
(c) The ball $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4\right\}$.
6. Let $I=\langle x y+y\rangle$ and $J=\langle x y-y\rangle$ in $\mathbb{R}[x, y]$.
(a) Determine $I \cap J=(t I+(1-t) J) \cap \mathbb{R}[x, y]$.
(b) Show that $V(I \cap J)$ is the union of three lines L_{1}, L_{2}, L_{3}.
(c) Show that $V(t I+(1-t) J) \subset \mathbb{R}^{3}$ is a union of lines $\tilde{L}_{1}, \tilde{L}_{2}$ and a plane \tilde{L}_{3} with projections $\pi_{1}\left(\tilde{L}_{i}\right)=L_{i}, i=1,2,3$, to the $x y$-plane.
(d) Let $(x, y) \in L_{i}$. For each $i=1,2,3$, describe what information can be seen in the range of possible values for the t-coordinate such that $(t, x, y) \in V(t I+(1-t) J)$.
7. Let $p=40 x^{2}-174 x y+189 y^{2}$ and $q=40 x^{2}+6 x y-189 y^{2}$. Find $h \in \mathbb{Q}[x, y]$ such that $\langle h\rangle=\langle p\rangle \cap\langle q\rangle$ and compute $\operatorname{gcd}(p, q)=p q / h$.
