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Feb 22, 2018



Introduction

Question

What is the regularity of geodesics in sub-Riemannian geometry?

Are geodesics smooth? Are they even differentiable?

A priori geodesics are Lipschitz, so at least they are differentiable
almost everywhere. Beyond this, little is known in the general case.
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Introduction

We approach the differentiability problem from a metric geometry
viewpoint through the infinitesimal geometry of a sub-Riemannian
manifold.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a
sub-Riemannian Carnot group.

Theorem (Belläıche 1996)

The metric tangent of any sub-Riemannian manifold is a
sub-Riemannian homogeneous space, that is, a quotient of a
sub-Riemannian Carnot group.



Introduction

Even within a Carnot group G the metric viewpoint to
differentiability is still useful.

Due to the self-similarity of G by dilations, the infinitesimal
geometry is given by the Carnot group G itself, which lends itself
to a nice metric characterization of differentiability:

Lemma

A curve γ : I → G is differentiable at t ∈ I if and only the tangent
cone of γ at t consists of a single line.
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Tangent cones

Let γ : I → G be a curve. To define the tangent cone of γ at t0,
we study dilated copies of the curve centered at γ(t0).

For any dilation factor h > 0, define Ih = 1
h (I − t0) and

γh : Ih → G , γh(t) = δ 1
h

(
γ(t0)−1γ(t0 + ht)

)
.

This is simply the non-abelian version of the difference quotient
used in the definition of derivatives.

If the limit lim
h→0

γh(1) exists, it is the Pansu-derivative of γ at t0,

and in particular the curve is differentiable at t0.
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Tangent cones

In general, there is no need for lim
h→0

γh to exist.

If γ is L-Lipschitz, then so is γh. Thus {γh : h > 0} is a family of
L-Lipschitz curves in G with γh(0) = e for all h > 0.

Ascoli-Arzelá =⇒ for every sequence hj → 0 there is a
subsequence hjk and a curve σ : R→ G such that γhjk → σ
uniformly on compact sets of R.

The tangent cone of γ at t0 is the collection of all such curves:

Tang(γ, t0) =
{
σ | ∃hj → 0 : γhj → σ

}
.
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Tangent cones

A simple result of metric geometry is:

Lemma

Let γ : I → G be a geodesic and t ∈ I . Then every σ ∈ Tang(γ, t)
is also a geodesic in G .

However, using the properties of Carnot groups we are able to
prove something less trivial:

Theorem (H. – Le Donne)

Let γ : I → G be a geodesic and t ∈ I . Then for every
σ ∈ Tang(γ, t), the curve πs ◦ σ is a geodesic in the Carnot group
G/ exp(Vs) of one step lower.
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Theorem (H. – Le Donne)

Let γ : I → G be a geodesic and t ∈ I . Then for every
σ ∈ Tang(γ, t), the curve πs ◦ σ is a geodesic in the Carnot group
G/ exp(Vs) of one step lower.

Here V1 ⊕ · · · ⊕ Vs = g is the stratification of the Lie algebra of G
and πs : G → G/ exp(Vs) is the quotient projection.
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Tangent cones

Another useful simple result of metric geometry is that tangents of
tangents are tangents:

Lemma

Tang(Tang(γ, t), 0) ⊂ Tang(γ, t).

The proof of this lemma is a diagonal argument using the
continuity of dilations and the homomorphism property

δλ ◦ δη = δλη.



Tangent cones

Iterate the previous theorem:

γ

blowup
 σ1

blowup
 σ2

blowup
 . . .

blowup
 σs−1∈ ∈ ∈

Tang(γ, t) ⊃ Tang(σ1, 0) ⊃ . . . ⊃Tang(σs−2, 0)

geodesic in
G

geodesic in
G/ exp(Vs)

geodesic in
G/ exp(Vs−1⊕Vs)

. . .
geodesic in
G/[G ,G ]

=⇒ When G is a step s Carnot group, any s − 1 times iterated
tangent of a geodesic is also geodesic in the horizontal space
G/[G ,G ].
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Tangent cones

When G is sub-Riemannian, G/[G ,G ] is an inner product space.
The only geodesics in an inner product space are lines, so we get
another proof of

Theorem (Monti–Pigati–Vittone 2017)

If γ : I → M is a geodesic in a sub-Riemannian manifold, then for
every t ∈ I there exists a line in Tang(γ, t).



Asymptotic cones



Asymptotic cones

Tangents of geodesics in G are infinite geodesics in G .

=⇒ Knowledge about infinite geodesics is relevant also within the
regularity problem.

Hence we apply our techniques also to the study of the large scale
behavior of geodesics through their asymptotic cones:

Asymp(γ) =
{
σ | ∃hj →∞ : γhj → σ

}
Tang(γ, t0) =

{
σ | ∃hj → 0 : γhj → σ

}
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Asymptotic cones

Theorem (H. – Le Donne)

If γ : R→ G is a geodesic, then

(i) π ◦ γ : R→ G/[G ,G ] is a geodesic,

or

(ii) ∃ a hyperplane W ⊂ G/[G ,G ] and ∃R > 0 such that
π ◦ γ(R) ⊂ BG/[G ,G ](W ,R).

R

π ◦ γ
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Asymptotic cones

Corollary

If G is sub-Riemannian, then for every geodesic γ : R→ G there
exists a Carnot subgroup H < G of lower rank such that

σ ∈ Asymp(γ) =⇒ σ(R) ⊂ H.

The subgroup H is the Carnot group generated by the horizontal
hyperplane W .
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Asymptotic cones

Theorem (H. – Le Donne)

If γ : R→ G is a (1,C )-quasi-geodesic, then

(i) π ◦ γ : R→ G/[G ,G ] is a (1, C̃ )-quasi-geodesic,

or

(ii) ∃ a hyperplane W ⊂ G/[G ,G ] and ∃R > 0 such that
π ◦ γ(R) ⊂ BG/[G ,G ](W ,R).

R

π ◦ γ
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The core ideas of the proofs

It is in principle simple to show that a curve is not a geodesic: find
a shorter curve with the same endpoints.

Hence to prove properties of geodesics:

(1) Assume some property does not hold for an arbitrary curve.

(2) Use the assumption to construct a shorter curve with the
same endpoints.



The core ideas of the proofs

The cut & correct strategy to shortening a curve:

(2a) The cut: replace some curve segment γ|[a,b] with the lift of a
geodesic from G/ exp(Vs), shortening γ by some ε > 0, but
changing its endpoint.

(2b) The correction: perturb the curve so that

(i) the endpoint is reverted to the original endpoint, and
(ii) length is increased by no more than ε.



The cut

From the algebraic viewpoint, lifting a geodesic can be rewritten as
a two point lifting property:

Proposition

For any g ∈ G there exists h ∈ exp(Vs) such that

dG/ exp(Vs)(e, πsg) = dG (e, hg).

After replacing γ|[a,b] with a geodesic segment from G/ exp(Vs),
either

(i) we decrease length by ε > 0, but the endpoint is
left-translated by some h ∈ exp(Vs), or

(ii) πs ◦ γ|[a,b] was itself a geodesic, and the endpoint does not
change.



The correction

Perturb the curve via the insertion of correcting curves.

R G

0 t0 2
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The correction

Algebraically, inserting a curve α : [0, 1]→ G at a point g = γ(t)
will left-translate the endpoint of the curve by

g · α(0)−1 · α(1) · g−1.

Idea: the insertion can change the endpoint by much more than
the addition of length when g = γ(t) is far from the identity.
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The correction

More explicitly, the correction we use is as follows. Denote by r the
rank of G .

(1) Choose r + 1 points g0, . . . , gr along the curve γ.

(2) For each curve segment gk−1 to gk , insert αk at gk−1, and
insert the reverse α−1k at gk .

g0
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The correction

A back-and-forth perturbation is a group commutator:

aαa−1 · bα−1b = a[α, a−1b]a−1.

=⇒ Perturbation in the layer s − 1 correct an error in layer s.

Linear algebra =⇒ our error correction method is reduced to
solving

L(α1, . . . , αr ) = log h,

where L : (Vs−1)r → Vs is a linear map depending on the points
g0, . . . , gr .
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Estimating the correction

Corrections in layer s − 1
=⇒ L only depends on the horizontal projections π(g0), . . . , π(gr )
=⇒ L(α1, . . . , αr ) = log h has a simple geometric description:

‖αk‖ .
‖log h‖

F (g0, . . . , gr )
.

where F (g0, . . . , gr ) is the smallest height of the parallelotope with
sides

xk = π(gk)− π(gk−1) ∈ G/[G ,G ], k = 1, . . . , r

in the normed space G/[G ,G ] ' (Rr , ‖·‖).



Estimating the correction

π(g0)

π(g1)

π(g2)

F (g0, g1, g2) = min{d(x1, span x2), d(x2, span x1)}.

=⇒ the size of parallelotopes in the horizontal projection
determines how large errors can be corrected.
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=⇒ the size of parallelotopes in the horizontal projection
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Tangent cones

If γ has any non-degenerate parallelotope of size

F (g0, . . . , gr ) ≥ R, then γh has a parallelotope of size ≥ R

h
.

R/h→∞ as h→ 0 =⇒ any cut of a tangent in G/ exp(Vs)
cannot gain any length.



Asymptotic cones

If γ is not a geodesic in G/ exp(Vs), it must contain only
parallelotopes of bounded size F (g0, . . . , gr ) ≤ M.

By a Euclidean compactness argument, any set in Rr which
contains only parallelotopes of size ≤ R, is contained in a
R-neighborhood of a hyperplane.



Thanks for your attention!
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