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Regularity of length-minimizers

What is the regularity of geodesics on subriemannian manifolds?

Consider three different cases of Carnot-Carathéodory manifolds:

1 Riemannian: Inner product on the tangent bundle

2 Subriemannian: Inner product on a subbundle

3 Subfinsler: Norm on a subbundle

All Riemannian geodesics are C∞-smooth.
There exist subfinsler geodesics that are merely Lipschitz.
Toward which extreme does the subriemannian case tend to?
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Regularity of length-minimizers

Need to either

1 find a proof of smoothness (à la the Riemannian case) or

2 find a geodesic that is not smooth (à la the subfinsler case)

Theorem (H. and Le Donne 2016)

Length-minimizing curves on subriemannian manifolds do not have
corner-type singularities.

=⇒ A potential non-smooth geodesic must be more complicated
than just a curve that has one-sided derivatives everywhere and is
C 1 outside of a single point.
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1 Regularity of length-minimizers

2 Reduction of the regularity problem to Carnot groups
Desingularization
Metric blow-up
Rank reduction

3 Cutting corners in Carnot groups
The Euclidean and Heisenberg cases
Lifting curves from step s − 1 to step s
Error correction



Regularity of length-minimizers

Almost all of the known regularity results for subriemannian
geodesics are for specific types of subriemannian manifolds. For
example

Golé and Karidi 1995: Geodesics in step 2 Carnot groups are
smooth.

Leonardi and Monti 2008: Corners are not length-minimizing
on equiregular subriemannian manifolds satisfying a condition
on the iterated Lie-brackets of length ≥ 4.



Regularity of length-minimizers

One completely general result exists:

Theorem (Sussmann 2014)

On analytic subriemannian manifolds, any arc length parametrized
length-minimizer is analytic on an open dense set.
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Desingularization

Theorem (Rothschild and Stein 1976)

Any subriemannian manifold is locally
the projection of an equiregular
subriemannian manifold.
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Lemma

Lifting curves preserves
corner-type singularities
and lengths of curves.

Nhor

Mhor
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Metric blow-up

Theorem (Mitchell 1985)

The metric tangent of an
equiregular subriemannian
manifold is a Carnot group.

G
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Theorem (Leonardi and Monti
2008)

The blow-up of a corner-type
singularity is given by two
half-lines.

Ghor

Nhor
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Rank reduction

A length-minimizing curve contained in a subgroup H < G is
also length-minimizing in H.

A corner is contained in the rank 2 subgroup generated by the
2 half-lines.

G H



Reduction of the regularity problem to Carnot groups

Existence of a length-minimizing curve with a corner-type
singularity in some subriemannian manifold.

=⇒

Existence of a length-minimizing corner in a rank 2 Carnot group.
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Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.

Proof by induction on the step of the group.

1 Lift a geodesic from the previous step.

2 Correct the error in the endpoint using the stratification of the
Lie algebra.

3 Use dilations to find a situation where there is a decrease of
length.
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The setting

A rank 2 Carnot group G of step s, with stratified algebra
g = V1 ⊕ · · · ⊕ Vs .

Linearly independent vectors X1,X2 ∈ V1 of unit norm
|X1| = |X2| = 1.

A corner

t 7→

{
exp(−tX1), t ≤ 0

exp(tX2), t > 0

connecting exp(X1) to exp(X2) with length 2.

Need to show that

d(exp(X1), exp(X2)) < 2.



The Euclidean case (step 1)

In the Euclidean case, there are only horizontal components:
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The Heisenberg group case (step 2)

In the Heisenberg case, the error in the vertical component needs
to be corrected.

zerror = 0
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The Heisenberg group case (step 2)

In the Heisenberg case, the error in the vertical component needs
to be corrected.

ε2

ε

zerror = 0



Lifting curves from step s − 1 to step s

Consider a step s ≥ 3.

The final layer of the stratification gives a normal subgroup
H = exp(Vs) < G .

Quotienting by H gives a step s − 1 Carnot group G/H.

Any curve in G/H can be isometrically lifted to G .

Lemma

If corners are not length-minimizing in step s − 1, then there exists
h ∈ H such that

d(exp(X1), h exp(X2)) < 2.

However, in general

d(exp(X1), h exp(X2)) + d(h exp(X2), exp(X2)) > 2.
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Curve insertions (geometric viewpoint)

The error h can be eliminated by inserting correcting curves.

R G

0 t0 2
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Curve insertions (algebraic viewpoint)

Let α and β be curves [0, 1]→ G with β(0) = e.
The insertion of β into α at time t0 is the curve [0, 2]→ G :

t 7→


α(t), t < t0

α(t0) · β(t − t0), t0 < t < t0 + 1

α(t0) · β(1) · α(t0)−1 · α(t − 1), t0 + 1 < t

The new endpoint is given by the conjugation

Cα(t0) β(1) · α(1).
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Using the stratification

Insert curves with endpoints in exp(Vs−1) along the corner.

Step s ≥ 3 =⇒ exp : Vs−1 ⊕ Vs → G is an injective
homomorphism.

For X ∈ V1 and Y ∈ Vs−1

Cexp(X ) exp(Y ) = exp(Y + [X ,Y ]).

=⇒ Corrections have the following linear effect:

Insertion point endpoint change in layer s − 1 change in layer s
X Y Y [X ,Y ]
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Using the stratification

The error to be corrected is h = exp(Z ), with Z ∈ Vs .

G is a Carnot group, so Vs = [V1,Vs−1].

X1 and X2 are linearly independent, so they span V1.

=⇒ There exist W1,W2 ∈ Vs−1 such that

Z = [X1,W1] + [X2,W2] .

Need to choose vectors Y ∈ Vs−1 and insertion points X ∈ V1

along the corner such that

1 The error in the last layer is corrected:∑
[X ,Y ] = −Z = − [X1,W1]− [X2,W2]

2 No error in the second-to-last layer is created:∑
Y = 0.
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The error correcting system

Insertion point endpoint change in layer s − 1 change in layer s
X1 Y1 Y1 [X1,Y1]
1
2X2 Y2 Y2

[
1
2X2,Y2

]
X2 Y3 Y3 [X2,Y3]

Suffices to solve the linear system

Y1 + Y2 + Y3 = 0 Y1 + Y2 + Y3 = 0

[X1,Y1] = − [X1,W1] → Y1 = −W1[
X2,

1
2Y2 + Y3

]
= − [X2,W2] 1

2Y2 + Y3 = −W2



Error correction

Two different curves with opposite errors in exp(Vs):

The lift of a geodesic
from step s − 1

Error exp(Z )
Length 2 − C

The corner with
corrections Y1,Y2,Y3

Error exp(−Z )
Length 2 + C̃



Error correction

Cut a small segment of the corner using a dilation of the geodesic
from step s − 1, and correct the created error by dilating the
corrections Y .

Need to ensure that the scaled versions of the curves still have
opposite errors.
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Choosing the suitable dilations

Y1,Y2,Y3 were given by a system that depends linearly on Z .
=⇒ Y1,Y2,Y3 and Z need to have equal scaling.

The metric dilations δλ scale the endpoints with orders

δλ exp(Z ) = exp(λsZ ) and

δλ exp(Yj) = exp(λs−1Yj)

Thus if the geodesic creating the error Z is dilated by ε, the
corrections Y1,Y2,Y3 need to be dilated by εs/(s−1):

δε exp(Z ) = exp(εsZ )

δεs/(s−1) exp(Y ) = exp(εsY )
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Choosing the suitable dilations

(2− C )ε
1− ε

1− ε

The length of the combined curve is
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Choosing the suitable dilations

C̃εs/(s−1)

(2− C )ε
1− ε

1− ε

The length of the combined curve is

2(1− ε) + (2− C )ε+ C̃εs/(s−1)



Non-minimality of the corner

Simplifying, we get

2(1− ε) + (2− C )ε+ C̃εs/(s−1) = 2− Cε+ o(ε)

Hence
d(exp(X1), exp(X2)) ≤ 2− Cε+ o(ε) < 2.

for ε > 0 small enough.

=⇒ A corner from exp(X1) to exp(X2) is not length-minimizing.
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