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Regularity of length-minimizers

What is the regularity of geodesics on subriemannian manifolds?

Consider three different cases of Carnot-Carathéodory manifolds:

Riemannian: Inner product on the tangent bundle
Subriemannian: Inner product on a subbundle
Subfinsler: Norm on a subbundle

All Riemannian geodesics are C*°-smooth.

There exist subfinsler geodesics that are merely Lipschitz.
Toward which extreme does the subriemannian case tend to?
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Regularity of length-minimizers

Need to either
find a proof of smoothness (a la the Riemannian case) or

find a geodesic that is not smooth (a la the subfinsler case)

Theorem (H. and Le Donne 2016)

Length-minimizing curves on subriemannian manifolds do not have
corner-type singularities.

=—> A potential non-smooth geodesic must be more complicated
than just a curve that has one-sided derivatives everywhere and is
C! outside of a single point.
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Reduction of the regularity problem to Carnot groups
m Desingularization

m Metric blow-up

m Rank reduction

Cutting corners in Carnot groups

m The Euclidean and Heisenberg cases
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Regularity of length-minimizers

Almost all of the known regularity results for subriemannian
geodesics are for specific types of subriemannian manifolds. For
example
m Golé and Karidi 1995: Geodesics in step 2 Carnot groups are
smooth.
m Leonardi and Monti 2008: Corners are not length-minimizing
on equiregular subriemannian manifolds satisfying a condition
on the iterated Lie-brackets of length > 4.



Regularity of length-minimizers

One completely general result exists:

Theorem (Sussmann 2014)

On analytic subriemannian manifolds, any arc length parametrized
length-minimizer is analytic on an open dense set.
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Rank reduction

m A length-minimizing curve contained in a subgroup H < G is
also length-minimizing in H.

m A corner is contained in the rank 2 subgroup generated by the
2 half-lines.
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Reduction of the regularity problem to Carnot groups

Existence of a length-minimizing curve with a corner-type
singularity in some subriemannian manifold.

=

Existence of a length-minimizing corner in a rank 2 Carnot group.



Cutting corners in Carnot groups
m The Euclidean and Heisenberg cases
m Lifting curves from step s — 1 to step s
m Error correction



Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.



Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.

Proof by induction on the step of the group.



Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.

Proof by induction on the step of the group.

Lift a geodesic from the previous step.



Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.
Proof by induction on the step of the group.

Lift a geodesic from the previous step.

Correct the error in the endpoint using the stratification of the
Lie algebra.



Cutting corners in Carnot groups

Theorem (H. and Le Donne 2016)

Corners are not length-minimizing in any subriemannian Carnot
group.
Proof by induction on the step of the group.

Lift a geodesic from the previous step.

Correct the error in the endpoint using the stratification of the
Lie algebra.

Use dilations to find a situation where there is a decrease of
length.



The setting

m A rank 2 Carnot group G of step s, with stratified algebra
g=V1d- - Vs
m Linearly independent vectors Xi, Xo € V4 of unit norm
|Xi| = X2 = 1.
m A corner
exp(—tX1), t<O0
{exp(th)7 t>0

connecting exp(Xi) to exp(Xz2) with length 2.
m Need to show that

d(exp(X1), exp(X2)) < 2.
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Lifting curves from step s — 1 to step s

Consider a step s > 3.
m The final layer of the stratification gives a normal subgroup
H =exp(Vs) < G.
m Quotienting by H gives a step s — 1 Carnot group G/H.
m Any curve in G/H can be isometrically lifted to G.

Lemma

If corners are not length-minimizing in step s — 1, then there exists
h € H such that

d(exp(X1), hexp(X2)) < 2.

However, in general

d(exp(X1), hexp(X2)) + d(hexp(X2), exp(X2)) > 2.
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Let « and 3 be curves [0,1] — G with 5(0) = e.
The insertion of 3 into « at time tp is the curve [0,2] — G:

a(t)7 t<tp
t— < atp) - B(t — to), th<t<tg+1
a(te) - B(1) -a(t)) - aft—1), to+1<t

The new endpoint is given by the conjugation

Ca(to) B(1) - (1).
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m Insert curves with endpoints in exp(V;_1) along the corner.

mSteps>3 — exp: Vs_1P Vs — G is an injective
homomorphism.

mFor Xe Viand Y € Vs_1

Cexp(x) exp(Y) = exp(Y + [X, Y]).

= Corrections have the following linear effect:

Insertion point endpoint change in layer s —1 change in layer s
X Y Y (X, Y]
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Using the stratification

m The error to be corrected is h = exp(Z), with Z € V..

m G is a Carnot group, so Vi = [V4, Vs_1].

m Xj and Xy are linearly independent, so they span Vj.
= There exist Wi, W, € V;_1 such that

Z = [Xl, Wl] + [Xg, W2] .

Need to choose vectors Y € V,_1 and insertion points X € V
along the corner such that
The error in the last layer is corrected:

DX Y =-Z = —[X;, W] — [Xz, Wy

No error in the second-to-last layer is created:

Y v=o



The error correcting system

Insertion point endpoint change in layer s — 1 change in layer s
X Y1 Y1 [X1, Y1]
X Y2 Y2 (31X, Yo
X Y3 Y3 [X2, Y3]

Suffices to solve the linear system
Yi+ Yo+ Y3=0 Yi+ Yo+ Y3=0
X1, 1] = —[X;, "] — Yi=-W
(X2, 32 + V3] = — [Xo, WS Yo+ Ys=-Ws



Error correction

Two different curves with opposite errors in exp(Vs):

The lift of a geodesic The corner with O
from step s — 1 corrections Y1, Y2, Y3

e

Error exp(Z) Error exp(—2)
Length2 — C Length 2 + C



Error correction

Cut a small segment of the corner using a dilation of the geodesic
from step s — 1, and correct the created error by dilating the
corrections Y.

O




Error correction

Cut a small segment of the corner using a dilation of the geodesic
from step s — 1, and correct the created error by dilating the
corrections Y.

O

Need to ensure that the scaled versions of the curves still have
opposite errors.
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Choosing the suitable dilations

m Y1, Yo, Y3 were given by a system that depends linearly on Z.
= Y1, Y2, Y3 and Z need to have equal scaling.

m The metric dilations &y scale the endpoints with orders
drexp(Z) = exp(A°Z) and
5 exp(Y}) = exp(A1Y))

Thus if the geodesic creating the error Z is dilated by ¢, the
corrections Y1, Y2, Y3 need to be dilated by e/(s—1):

deexp(Z) = exp(e°Z)
ds/s—1) exp(Y) = exp(e’Y)
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Choosing the suitable dilations

The length of the combined curve is
2(1-€e)+(2—-C)e



Choosing the suitable dilations

Q.

L. T (2—0C)e

The length of the combined curve is
2(1—€)+ (2— C)e+ Ces/s)



Non-minimality of the corner

Simplifying, we get
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Non-minimality of the corner

Simplifying, we get
20—€)+ (2= C)e+ Ce¥/57D) =2 — Ce+ o(e)

Hence
d(exp(X1),exp(X2)) <2 — Ce+ o(e) < 2.

for € > 0 small enough.

= A corner from exp(X1) to exp(X2) is not length-minimizing.
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