Milnor's exotic structures

Eero Hakavuori

Graduate student seminar

Nov 18, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Manifold: a Hausdorff space with countable basis that is locally homeomorphic to \mathbb{R}^n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Manifold: a Hausdorff space with countable basis that is locally homeomorphic to \mathbb{R}^n . **Smooth manifold:** a manifold equipped with a smooth structure.

Manifold: a Hausdorff space with countable basis that is locally homeomorphic to \mathbb{R}^n . **Smooth manifold:** a manifold equipped with a smooth structure.

Usually the smooth structure on M is determined by an atlas \mathcal{A} of charts $\varphi: U \to \mathbb{R}^n$ on open sets $U \subset M$, where the transition maps $\varphi_1 \circ \varphi_2^{-1}$ are diffeomorphisms.

Consider $M = \mathbb{R}$ as a smooth manifold whose only chart is

$$\varphi: M \to \mathbb{R}, \quad \varphi(x) = \operatorname{sign}(x)\sqrt{|x|}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider $M = \mathbb{R}$ as a smooth manifold whose only chart is

$$\varphi: M \to \mathbb{R}, \quad \varphi(x) = \operatorname{sign}(x)\sqrt{|x|}.$$

With respect to this smooth structure $f : M \to \mathbb{R}$, f(x) = |x| is smooth: $f \circ \varphi^{-1}(x) = |\operatorname{sign}(x)x^2| = x^2$

 $\varphi(x)$

Х

Consider $M = \mathbb{R}$ as a smooth manifold whose only chart is

$$\varphi: M \to \mathbb{R}, \quad \varphi(x) = \operatorname{sign}(x)\sqrt{|x|}.$$

With respect to this smooth structure $f : M \to \mathbb{R}$, f(x) = |x| is smooth: $f \circ \varphi^{-1}(x) = |\operatorname{sign}(x)x^2| = x^2$

Despite this, M is diffeomorphic to standard \mathbb{R} . $\varphi: M \to \mathbb{R}$ is by construction a diffeomorphism. $\varphi(\mathbf{X})$

Х

Similarly to the previous example, as a one-dimensional manifold, the square

has a smooth structure which makes it diffeomorphic to the unit circle $S^1 \subset \mathbb{R}^2$.

Theorem

Every manifold of dimension ≤ 3 has a unique smooth structure.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Every manifold of dimension ≤ 3 has a unique smooth structure.

■ For dim ≤ 4, existence of a triangulation ⇒ existence of a smooth structure (Whitehead 1961).

Theorem

Every manifold of dimension ≤ 3 has a unique smooth structure.

■ For dim ≤ 4, existence of a triangulation ⇒ existence of a smooth structure (Whitehead 1961).

 Two-dimensional manifolds have an essentially unique triangulation (Radó 1925).

Theorem

Every manifold of dimension ≤ 3 has a unique smooth structure.

■ For dim ≤ 4, existence of a triangulation ⇒ existence of a smooth structure (Whitehead 1961).

- Two-dimensional manifolds have an essentially unique triangulation (Radó 1925).
- Three-dimensional manifolds have an essentially unique triangulation (Moise 1952).

Every manifold of dimension ≤ 3 has a unique smooth structure.

- For dim ≤ 4, existence of a triangulation ⇒ existence of a smooth structure (Whitehead 1961).
- Two-dimensional manifolds have an essentially unique triangulation (Radó 1925).
- Three-dimensional manifolds have an essentially unique triangulation (Moise 1952).
- For dim ≤ 3, equivalent triangulations ⇒ diffeomorphic smooth structures (Whitehead 1961).

Theorem

There exist manifolds of dimension \geq 4 with several different smooth structures, or no smooth structures at all.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

There exist manifolds of dimension \geq 4 with several different smooth structures, or no smooth structures at all.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples:

• Milnor 1956: exotic structures on the sphere S^7 .

There exist manifolds of dimension \geq 4 with several different smooth structures, or no smooth structures at all.

Examples:

- Milnor 1956: exotic structures on the sphere S^7 .
- Kervaire 1960: a 10-dimensional manifold with no smooth structure.

There exist manifolds of dimension \geq 4 with several different smooth structures, or no smooth structures at all.

Examples:

- Milnor 1956: exotic structures on the sphere S^7 .
- Kervaire 1960: a 10-dimensional manifold with no smooth structure.
- Freedman 1982: a four-dimensional manifold E₈ with no smooth structure.

There exist manifolds of dimension \geq 4 with several different smooth structures, or no smooth structures at all.

Examples:

- Milnor 1956: exotic structures on the sphere S^7 .
- Kervaire 1960: a 10-dimensional manifold with no smooth structure.
- Freedman 1982: a four-dimensional manifold E₈ with no smooth structure.
- Freedman 1982: existence of an exotic \mathbb{R}^4 .
- Gompf 1985: an infinite family of exotic ℝ⁴s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The above implies S^7 has two *different* smooth structures.

The above implies S^7 has two *different* smooth structures.

A homeomorphism $h: S^7 \to M$ gives a new smooth structure on S^7 :

 $\mathcal{A} = \{ \varphi \circ h : \varphi \text{ chart of } M \}.$

The above implies S^7 has two *different* smooth structures.

A homeomorphism $h: S^7 \to M$ gives a new smooth structure on S^7 :

$$\mathcal{A} = \{ \varphi \circ h : \varphi \text{ chart of } M \}.$$

By construction (S^7, A) is diffeomorphic to M, but M is not diffeomorphic to standard S^7 .

The above implies S^7 has two *different* smooth structures.

A homeomorphism $h: S^7 \to M$ gives a new smooth structure on S^7 :

$$\mathcal{A} = \{ \varphi \circ h : \varphi \text{ chart of } M \}.$$

By construction (S^7, A) is diffeomorphic to M, but M is not diffeomorphic to standard S^7 .

 (S^7, \mathcal{A}) is thus an *exotic sphere*.

Milnor's exotic spheres

How to find such a manifold M:

 Consider certain fiber bundles S³ → M_k → S⁴, parametrized by k ∈ Z.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Consider certain fiber bundles S³ → M_k → S⁴, parametrized by k ∈ Z.
- **2** Use Morse theory to show every M_k is homeomorphic to S^7 .

- Consider certain fiber bundles S³ → M_k → S⁴, parametrized by k ∈ Z.
- **2** Use Morse theory to show every M_k is homeomorphic to S^7 .
- 3 Define a differential invariant on closed, oriented 7-manifolds.

- Consider certain fiber bundles S³ → M_k → S⁴, parametrized by k ∈ Z.
- **2** Use Morse theory to show every M_k is homeomorphic to S^7 .
- 3 Define a differential invariant on closed, oriented 7-manifolds.
- 4 Verify that the invariant is not constant with respect to $k \in \mathbb{Z}$.

- Consider certain fiber bundles S³ → M_k → S⁴, parametrized by k ∈ Z.
- **2** Use Morse theory to show every M_k is homeomorphic to S^7 .
- 3 Define a differential invariant on closed, oriented 7-manifolds.
- 4 Verify that the invariant is not constant with respect to $k \in \mathbb{Z}$.

(日) (同) (三) (三) (三) (○) (○)

- Anything diffeomorphic to S^7 would have the same invariant.
- \implies some manifold M_k is not diffeomorphic to S^7 .

Consider two charts on S^4 given by stereographic projection with respect to the north pole and the south pole.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Next, add in 3 more dimensions by gluing two copies of $\mathbb{R}^4 \times S^3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Next, add in 3 more dimensions by gluing two copies of $\mathbb{R}^4 \times S^3$.

The product $S^4 \times S^3$ would be given by

$$\mathbb{R}^4 \times S^3 \#_{\Phi} \mathbb{R}^4 \times S^3,$$

where Φ is the diffeomorphism on $\mathbb{R}^4\setminus\{0\}\times S^3$ given by

$$\Phi(x,v) = (\psi(x),v) = \left(\frac{x}{\|x\|^2},v\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Next, add in 3 more dimensions by gluing two copies of $\mathbb{R}^4 \times S^3$.

The product $S^4 imes S^3$ would be given by

 $\mathbb{R}^4 \times S^3 \#_{\Phi} \mathbb{R}^4 \times S^3$,

where Φ is the diffeomorphism on $\mathbb{R}^4\setminus\{0\}\times S^3$ given by

$$\Phi(x,v) = (\psi(x),v) = \left(\frac{x}{\|x\|^2},v\right).$$

But we want the manifold to be homeomorphic to S^7 , so we need to modify the gluing diffeomorphism to some $\Phi(x, v) = (\psi(x), f(x, v))$.

A suitable map $f : \mathbb{R}^4 \setminus \{0\} \times S^3 \to S^3$ will be given by utilizing quaternion multiplication.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A suitable map $f : \mathbb{R}^4 \setminus \{0\} \times S^3 \to S^3$ will be given by utilizing quaternion multiplication.

Viewing \mathbb{R}^4 as quaternions, $\mathbb{R}^4 \setminus \{0\}$ has an invertible multiplication, which also restricts to a multiplication on $S^3 \subset \mathbb{R}^4$.

A suitable map $f : \mathbb{R}^4 \setminus \{0\} \times S^3 \to S^3$ will be given by utilizing quaternion multiplication.

Viewing \mathbb{R}^4 as quaternions, $\mathbb{R}^4 \setminus \{0\}$ has an invertible multiplication, which also restricts to a multiplication on $S^3 \subset \mathbb{R}^4$.

For any $k \in \mathbb{N}$, consider

$$f_k(x,v) = \frac{x}{\|x\|} \cdot x^k \cdot v \cdot x^{-k}$$

Let M_k be the manifold given by gluing

$$M_k = \mathbb{R}^4 \times S^3 \#_{\Phi_k} \mathbb{R}^4 \times S^3,$$

where Φ_k is the diffeomorphism on $\mathbb{R}^4 \setminus \{0\} imes S^3$ given by

$$\Phi_k(x, \mathbf{v}) = (\psi(x), f_k(x, \mathbf{v})) = \left(\frac{x}{\|x\|^2}, \frac{x}{\|x\|} \cdot x^k \cdot \mathbf{v} \cdot x^{-k}\right).$$

Let M_k be the manifold given by gluing

$$M_k = \mathbb{R}^4 \times S^3 \#_{\Phi_k} \mathbb{R}^4 \times S^3,$$

where Φ_k is the diffeomorphism on $\mathbb{R}^4 \setminus \{0\} imes S^3$ given by

$$\Phi_k(x, \mathbf{v}) = (\psi(x), f_k(x, \mathbf{v})) = \left(\frac{x}{\|x\|^2}, \frac{x}{\|x\|} \cdot x^k \cdot \mathbf{v} \cdot x^{-k}\right).$$

Morse theory \implies every such manifold M_k is homeomorphic to S^7 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Let M_k be the manifold given by gluing

$$M_k = \mathbb{R}^4 \times S^3 \#_{\Phi_k} \mathbb{R}^4 \times S^3,$$

where Φ_k is the diffeomorphism on $\mathbb{R}^4 \setminus \{0\} imes S^3$ given by

$$\Phi_k(x, \mathbf{v}) = (\psi(x), f_k(x, \mathbf{v})) = \left(\frac{x}{\|x\|^2}, \frac{x}{\|x\|} \cdot x^k \cdot \mathbf{v} \cdot x^{-k}\right).$$

Morse theory \implies every such manifold M_k is homeomorphic to S^7 .

This is shown by studying a function $g: M_k \to \mathbb{R}$, which in $\mathbb{R}^4 \times S^3$ is given by

$$g(x, v) = rac{v_1}{\sqrt{1 + \|x\|^2}}.$$

It only remains to check that at least one of the manifolds M_k is not diffeomorphic to S^7 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It only remains to check that at least one of the manifolds M_k is not diffeomorphic to S^7 .

To this end, define a certain differential invariant $\lambda : \mathcal{M} \to \mathbb{Z}_7$ on the set \mathcal{M} of smooth oriented 7-manifolds with a certain condition on their homology groups. $(H^3(\mathcal{M}) = H^4(\mathcal{M}) = 0)$

It only remains to check that at least one of the manifolds M_k is not diffeomorphic to S^7 .

To this end, define a certain differential invariant $\lambda : \mathcal{M} \to \mathbb{Z}_7$ on the set \mathcal{M} of smooth oriented 7-manifolds with a certain condition on their homology groups. $(H^3(\mathcal{M}) = H^4(\mathcal{M}) = 0)$

The manifolds M_k satisfy the above conditions, and

$$\lambda(M_k) = 4k^2 + 4k \mod 7.$$

Since

$$\lambda(M_0) = 4 \cdot 0^2 + 4 \cdot 0 = 0 \mod 7$$
 and
 $\lambda(M_1) = 4 \cdot 1^2 + 4 \cdot 1 = 1 \mod 7$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 M_0 and M_1 cannot be diffeomorphic.

Since

$$\lambda(M_0) = 4 \cdot 0^2 + 4 \cdot 0 = 0 \mod 7$$
 and
 $\lambda(M_1) = 4 \cdot 1^2 + 4 \cdot 1 = 1 \mod 7$,

 M_0 and M_1 cannot be diffeomorphic. Hence at least one of M_0 or M_1 is homeomorphic, but not diffeomorphic to S^7 .

Since

$$\lambda(M_0) = 4 \cdot 0^2 + 4 \cdot 0 = 0 \mod 7$$
 and
 $\lambda(M_1) = 4 \cdot 1^2 + 4 \cdot 1 = 1 \mod 7$,

 M_0 and M_1 cannot be diffeomorphic. Hence at least one of M_0 or M_1 is homeomorphic, but not diffeomorphic to S^7 .

In fact M_1 , which was defined by the gluing of two copies of $\mathbb{R}^4 imes S^3$ by the diffeomorphism

$$(x, \mathbf{v}) \mapsto \left(rac{x}{\|x\|^2}, rac{x}{\|x\|} \cdot x \cdot \mathbf{v} \cdot x^{-1}
ight),$$

is an exotic 7-sphere.

Further remarks on exotic structures

Theorem

On any sphere S^n of dimension $n \ge 5$, there are only finitely many different smooth structures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On any sphere S^n of dimension $n \ge 5$, there are only finitely many different smooth structures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Numb	ber (of sr	noo	th st	ruct	ures	:						
	1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbb{R}^{n}	1	1	1	∞	1	1	1	1	1	1	1	1	1
S ⁿ	1	1	1		1	1	28	2	8	6	992	1	3

On any sphere S^n of dimension $n \ge 5$, there are only finitely many different smooth structures.

Number of smooth structures:

	1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbb{R}^{n}	1	1	1	∞	1	1	1	1	1	1	1	1	1
S ⁿ	1	1	1		1	1	28	2	8	6	992	1	3

Open problem

How many smooth structures are there on the 4-sphere?

Thank you

<□ > < @ > < E > < E > E のQ @