MAST31005 Algebra II (2024)

Time & location

14.15-16.00 room B322

References

I. Stewart. (2023) GALOIS THEORY, fifth ed.

D. Cox, J. Little, D. O’Shea. (2015). IDEALS, VARIETIES, AND ALGORITHMS, fourth ed.

Schedule

weeklecture (Tu)exercise (Wed)lecture (Thu)
3 16.01.
field extensions, field extensions as vector spaces, the Tower Law
17.01. 18.01.
algebraic vs. transcendental, minimal polynomial, classification of simple algebraic and simple transcendental extensions
4 23.01.
primitive element theorem, the subfield of algebraic numbers, algebraic numbers as eigenvalues
24.01. 25.01.
polynomials for algebraic sums and products, constructible numbers and quadratic field extensions
5 30.01.
impossible constructions, origami numbers
31.01. 01.02.
multivariate polynomial ideals and varieties
6 06.02.
monomial orders, multivariate polynomial division
07.02. 08.02.
monomial ideals, Dickson's Lemma, ideal of leading terms
7 13.02.
Hilbert's Basis Theorem, Gröbner bases, Ascending Chain Condition, variety of an ideal, S-polynomials
14.02. 15.02.
Buchberger's criterion, Buchberger's algorithm, reduced Gröbner bases
8 20.02.
Sage sample
coprimality as a Buchberger shortcut, polynomial computations in SageMath
21.02. 22.02.
standard representation, lcm representation, Elimination Theorem, Extension Theorem
9 27.02.
proof of the Extension Theorem, Geometric Extension Theorem
28.02. 29.02.
polynomial and rational implicitization
10 - - -
11 12.03.
Weak Nullstellensatz, Hilbert's Nullstellensatz, radical ideals, Strong Nullstellensatz
13.03. 14.03.
ideal-variety correspondence, radical membership, square-free polynomials
12 19.03.
sums products and intersections of ideals, lcm
20.03. 21.03.
computing intersection ideals, Zariski closure
13 26.03.
ideal quotients, ideal saturations
27.03. -
14 - - 04.04.
computing ideal quotients and saturations, irreducible varieties, prime ideals, maximal ideals
15 09.04.
maximal ideals are points, irreducible decompositions, minimal decompositions
10.04. 11.04.
the closure theorem
16 16.04.
polynomial mappings on varieties, coordinate ring, pullbacks, isomorphic varieties
17.04. 18.04.
quotients by ideals as vector spaces, finiteness theorem
17 23.04.
zero dimensional ideals, ideal-variety correspondence for subvarieties, function field of a variety
24.04. 25.04.
rational mappings, birational equivalence
18 30.04.
recap
- 02.05.
exercise

Misc

Unoptimized origami circle intersection