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Abstract. We consider the existence problem of lifting a smooth
contact map between Carnot groups to a smooth contact map be-
tween central extensions of the original groups. Our main result
is a necessary and sufficient criterion formulated using the pull-
back of any de Rham potential of the codomain central extension
2-cocycle: the Rumin differential of the pullback is in a linear im-
age of the domain central extension 2-cocycle. We also show a
necessary criterion using the Pansu pullback: the Pansu pullback
of the codomain central extension 2-cocycle and a linear image of
the domain central extension 2-cocycle are in the same Lie algebra
cohomology class. We prove that the latter criterion is sufficient if
the domain group is Lipschitz 1-connected, or if the pullback has
maximal weight among Lie algebra 2-cohomology classes.

1. Introduction

1.1. Contact equations and rigidity. A C1-map f : G1 ⊃ U1 → G2

between Carnot groups is a contact map if it preserves the horizontal
distribution. A contact map is smooth if it is C∞-regular. We do not
require that contact maps have full rank, nor that they are homeomor-
phisms.

The contact condition leads to highly non-linear contact equations.
This makes the existence theory for contact maps delicate and leads
to rigidity phenomena on Carnot groups. The rigidity is highlighted
by a theorem by Pansu [Pan89]: if there exists a full-rank contact
diffeomorphism (or, more generally, a quasisymmetry) between Carnot
groups, then the Carnot groups are isomorphic. Various authors have
contributed to related rigidity results, see for instance [AK00b, Mag04,
WY14] for non-full rank and [CC06, OW11, KMX21b] for full rank
rigidity results.

Despite these rigidity results, there are powerful tools to construct
contact maps in special settings, see e.g. [KR95] and [Gro96]. The
lifting problem provides a further tool to generate contact maps.
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1.2. Lifting problem. Let V1 → G1
π1→ H1 and V2 → G2

π2→ H2 be
central extensions of Carnot groups. Let U1 ⊂ H1 and Ũ1 ⊂ G1 be open
sets such that π1(Ũ1) = U1. A map F : Ũ1 → G2 is a lift of f : U1 → H2

if π2 ◦ F = f ◦ π1. That is, if the diagram

Ũ1 G2

U1 H2

F

π1 π2

f

commutes. If both f and F are contact maps, we say that F is a
contact lift of f . The lifting problem asks for necessary and sufficient
conditions on the existence of a contact lift F of f .
In this manuscript, we find analytic and algebraic characterizations

of the lifting problem.

1.3. Existence of contact lifts to central extensions. Central ex-
tensions can be understood in terms of 2-cocycles, i.e., closed left-
invariant 2-forms which determine the Carnot structure of the central
extension. Therefore the lifting problem is linked to the associated
cocycles. To formulate our main result, let V1 → G1

π1→ H1 and
V2 → G2

π2→ H2 be fixed central extensions of Carnot groups given
by 2-cocycles ρ1 and ρ2, see Section 3 for details.
Consider any smooth potential for the 2-cocycle ρ2, i.e., a 1-form

α2 ∈ Ω1(H2) such that dα2 = ρ2. A natural path lifting criterion for
the existence of a contact lift can be rephrased in terms of (f ◦ π1)∗α2

and the Rumin differential dc in G1. By parsing dc through the central
extension V1 → G1 → H1, we find our main characterization theorem.

Theorem 1.1. When U1 ⊂ H1 is a simply connected domain, a smooth
contact map f : H1 ⊃ U1 → H2 admits a smooth contact lift F : G1 ⊃
π−1
1 (U1) → G2 if and only if there exists a linear map L : V1 → V2 such

that dcf
∗α2 = L ◦ πE0ρ1.

Here πE0 : Ω
2(U1;V1) → E2

0(U1;V1) is the orthogonal projection to
the Rumin complex E0(U1;V1) acting componentwise on vector-valued
forms, see Section 2.3. We also note that dcf

∗(α′
2 − α2) = 0 if α′

2 and
α2 are different potentials for ρ2 so the conclusion of Theorem 1.1 is
independent of the specific potential we use.

The existence of lifts also poses a constraint that does not require
computation of the Rumin differential but instead relates the Lie alge-
bra cohomology classes of the extension cocycles via the Pansu pullback
f ∗
P defined in [KMX21a].

Theorem 1.2. If U1 ⊂ H1 is a domain and a smooth contact map
f : H1 ⊃ U1 → H2 admits a smooth contact lift F : G1 ⊃ π−1

1 (U1) →
G2, then f

∗
Pρ2 = φ ◦ ρ1 + d0ω for some graded linear map φ : V1 → V2

and ω ∈ Ω1(U1;V2).
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Here d0ω is the Lie algebra differential (also known as the Chevalley–
Eilenberg differential) of the form ω, see Section 2.2. In particular,
f ∗
Pρ2 = φ ◦ ρ1 + d0ω implies that the Lie algebra cohomology class of
f ∗
Pρ2 is left-invariant.

1.4. Sufficient conditions for existence of contact lifts. As in
Section 1.3, let V1 → G1

π1→ H1 and V2 → G2
π2→ H2 be central exten-

sions of Carnot groups given by 2-cocycles ρ1 and ρ2, respectively. We
present two positive results where the criterion of Theorem 1.2 is, in
fact, both necessary and sufficient.

The first is when the domain group is Lipschitz 1-connected.

Theorem 1.3. Suppose that f ∗
Pρ2 = φ ◦ ρ1 + d0ω for a graded linear

map φ : V1 → V2 and a 1-form ω ∈ Ω1(U1;V2). If H1 is Lipschitz 1-
connected and U1 is simply connected, then f admits a smooth contact
lift F : G1 ⊃ π−1

1 (U1) → G2.

The strategy of the proof is to convert the condition f ∗
Pρ2 = φ ◦

ρ1 + d0ω on 2-cocycles to the condition in Theorem 1.1 using homo-
topies. Lipschitz 1-connectivity gives control on the diameter of the
area sweeped out by the homotopy. This is crucial when U1 is a proper
subdomain. Recall that H1 is Lipschitz 1-connected if there exists
λ > 0 such that, for every L > 0, every L-Lipschitz map γ : S1 → H1

from the circle S1 admits a λL-Lipschitz extension u : D → H1 to the
disk D.

The Carnot groups H1 to which Theorem 1.3 applies include the
Euclidean spaces, the Heisenberg groups Hn for n ≥ 2 [All98], the
Allcock groups [Mag10], and jet spaces J k(Rn) for k ≥ 1 and n ≥ 2
[WY10], and their direct products.

The second result is when the 2-cocycle on the target space has
large weight in comparison to the non-trivial 2-cohomology classes in
the domain.

Theorem 1.4. Suppose that f ∗
Pρ2 = φ ◦ ρ1 + d0ω for a graded linear

map φ : V1 → V2 and a 1-form ω ∈ Ω1(U1;V2). If the weight of ρ2 is
equal to or greater than the maximal weight of non-trivial 2-cocycles in
the Rumin complex E0 of H1 and U1 is simply connected, then f admits
a smooth contact lift F : G1 ⊃ π−1

1 (U1) → G2.

Theorem 1.4 utilizes the recent center-of-mass mollification due to
Kleiner–Müller–Xie [KMX20] and standard properties of the Rumin
complex. The mollification is used to compensate the fact that in
general the Pansu pullback does not commute with the exterior or the
Rumin differential.

Theorem 1.4 can be applied, for instance, to analyze lifts of con-
tact maps between real filiform groups. We recall that when the step
is at least two, the filiform group is not Lipschitz 1-connected. See
Example 10.4 for further discussion.
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1.5. Lifting problem in the literature. In general, the geometry
of both the domain and codomain strongly affect the lifting problem.
However, when the domain is one-dimensional, there are no obstruc-
tions to existence of contact lifts, and the lifts are well-understood,
e.g., by control theory (see [ABB20, Section 8]). When the domain is
higher-dimensional, only special cases of the lifting problem have been
extensively studied in the literature.

Allcock’s seminal contribution in [All98] to the Plateau problem on
higher Heisenberg groups was obtained by lifting a map D → R2n satis-
fying a Lagrangian condition to a Legendrian (contact) map D → Hn.
The lifting approach has been applied to the study of minimal La-
grangian surfaces [SW01] and in the context of Allcock groups [Mag10].

The lifting problem has also been used to generate quasisymmetric
mappings between Carnot groups. Capogna–Tang [CT95] studied lifts
of symplectomorphisms R2n → R2n to full-rank contact maps from Hn

onto itself. Later Warhust [War03] (in the smooth context) and Xie
[Xie15] (without smoothness assumptions) classified quasisymmetric
automorphisms of a real filiform Carnot group of step at least three;
such a map can be understood as an iterated lift of a bi-Lipschitz map
R2 → R2. The result is false in step two by the Korányi–Reimann
examples [KR85, KR95].

We also mention that Balogh–Hoefer-Isennegger–Tyson [BHIT06]
considered contact lifts of Lipschitz maps R2 → R2 in the context of
iterated functions systems in the first Heisenberg group. Their meth-
ods led to the existence of horizontal BV surfaces in the first Heisen-
berg group which contrasts earlier results on the non-existence of Lips-
chitz surfaces by Ambrosio–Kirchheim [AK00b], Magnani [Mag04], and
Wenger–Young [WY14].

1.6. Structure of the paper. Sections 2–6 cover the basic setup. In
Section 2, we recall preliminary notions on Carnot groups, the Rumin
complex, and the Pansu pullback. In Section 3, we recall basic facts
about central extensions of Lie algebras and Lie groups, and adapt
them to the Carnot setting. In Section 4, we reduce the study of
contact lifts to central extensions that preserve the horizontal rank.
In Section 5, we characterize the existence of contact lifts in terms of
horizontal path lifting, and rephrase the path lifting condition using a
potential of the central extension 2-cocycle. In Section 6, we discuss
structural properties of contact lifts, including uniqueness and behavior
of the lift in the fiber direction.

Sections 7–9 cover the proofs of our main results. In Section 7, we
compute how the Rumin differentials of 1-forms transform in central
extensions of Carnot groups, and prove Theorem 1.1. In Section 8, we
study the connection between the Pansu pullback and lifts to central
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extensions, and prove Theorems 1.2 and 1.4. In Section 9, we consider
the Lipschitz 1-connected setting, and prove Theorem 1.3.
Finally in Section 10, we give examples of Carnot groups and contact

maps that do (not) admit contact lifts.
Acknowledgements. E.H. was supported by the Research Coun-

cil of Finland (grant 347964 The abnormal curves of Sub-Riemannian
geometry). S.H. was supported by the Research Council of Finland,
project number 360505. T.I. was supported by the Swiss National Sci-
ence Foundation grant 212867. S.H. and T.I. were also supported by
the Research Council of Finland, project number 332671.

2. Preliminaries

2.1. Carnot groups. We recall the basic properties of Carnot groups.
We refer the reader to [LD17] for further details.

A Lie algebra g is stratified if it has a decomposition g = g[1]⊕· · ·⊕g[s]

with [g[1], g[k]] = g[k+1] for all k ≥ 1, where we denote g[k] = {0} for
k ≥ s + 1. A (sub-Riemannian) Carnot group is a simply connected
nilpotent Lie group G with a stratified Lie algebra g equipped with an
inner product on the horizontal layer g[1]. For considerations involving
the Rumin complex, we will need an inner product not only on the
horizontal layer g[1], but instead on the whole Lie algebra g. We always
equip the Lie algebra of a Carnot group with an inner product for which
the layers g[1] ⊕ · · · ⊕ g[s] are pairwise orthogonal. The homogeneous
dimension of G is QG :=

∑s
k=1 kdim(g[k]). The (horizontal) rank of G

is the dimension of the horizontal layer g[1].
Given g ∈ G, we denote by Lg : G → G the left-translation Lg(h) =

gh. We identify TeG with g. An absolutely continuous curve γ : [0, 1] →
G is horizontal if for almost every t ∈ [0, 1] its left-trivialized derivative
(L−1

γ(t))∗γ̇(t) is contained in the horizontal layer g[1]. The length of the

horizontal curve γ is

ℓ(γ) =

∫ 1

0

∥(L−1
γ(t))∗γ̇(t)∥ dt,

where the norm is the one induced by the inner product on g[1]. The
sub-Riemannian distance between two points g, h ∈ G is

d(g, h) = inf{ℓ(γ) | γ : [0, 1] → G horizontal, γ(0) = g, γ(1) = h}.

By construction, this distance is left-invariant.
Carnot groups also admit a one-parameter group of automorphisms,

known as the dilations δλ : G → G, λ > 0. The associated Lie algebra
automorphisms, also denoted δλ : g → g, are the linear maps defined
on each layer of the stratification as

δλ(X) = λkX, X ∈ g[k], 1 ≤ k ≤ s.
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The sub-Riemannian distance is 1-homogeneous with respect to these
dilations, i.e., d(δλg, δλh) = λd(g, h).

2.2. Left-invariant forms, the Lie algebra differential, and co-
cycles. Let h be a Lie algebra, V a vector space, and ρ :

∧k h → V a
vector-valued k-form. Here, and in what follows, V is assumed to be a
finite-dimensional vector space. The Lie algebra differential d0ρ of ρ is
the vector-valued (k + 1)-form

d0ρ(X1, . . . , Xk+1)

=
∑
i<j

(−1)i+jρ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1),

where X̂i means that Xi is omitted from the list. We identify
∧1 h ≃ h,

so vector valued 1-forms are identified with linear maps h → V . A k-
cocycle is a k-form whose Lie algebra differential vanishes.

When H is a Lie group with Lie algebra h, we will identify k-forms
ρ :
∧k h → V with their left-invariant extensions to differential k-

forms on H. Under this identification, the Lie algebra differential
of ρ :

∧k h → V coincides with the exterior differential of the left-
invariant differential form. In particular, a 2-cocycle ρ :

∧2 h → V can
be viewed as a vector-valued left-invariant 2-form ρ ∈ Ω2(H;V ) whose
exterior differential vanishes.

2.3. Rumin complex. We recall the basic properties of the Rumin
complex introduced in [Rum99]. See [Rum01] or [FT15] for more com-
prehensive presentations.

Let G be a Carnot group, and recall that there exists an inner prod-
uct on g such that the layers g[k] of the stratification are pairwise or-
thogonal. Fixing a basis and using duality, we obtain an inner product
on k-forms

∧k g∗ for each k ≥ 1. Using the inner product, we may
consider the orthogonal projection πim(d0) onto im(d0) and the orthog-
onal complement ker(d0)

⊥. We let d−1
0 denote the extension of the

left-inverse of d0|ker(d0)⊥ satisfying d−1
0 ◦ πim(d0) = d−1

0 .
Let U ⊂ G be a domain. The stratification on g induces a grading

by weights also on the differential forms Ω∗(U), see [FT15] for the
specifics. The relevant basic properties we recall are as follows. The
weight of a horizontal 1-form is one. Representing a non-zero form in
a left-invariant basis of pure weight forms, the weight of the form is
the minimum of the weights of the non-zero terms. For a form of pure
weight w, the Hodge star has weight QG − w. A V -valued form has a
componentwise representation relative to a basis of V , and its weight
is the minimum of the componentwise weights.

The weight preserving component of the de Rham differential d is
the C∞(U)-linear extension of the Lie algebra differential d0, which
we also denote by d0. We also extend πim(d0) and d

−1
0 C∞(U)-linearly
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from
∧∗ g∗ to all of Ω∗(U). Consequently, ker(d0), im(d0), and their

orthogonal complements have bases as C∞(U)-modules consisting of
pure weight left-invariant forms. Moreover, the orthogonal projections
to these submodules do not decrease weight.

There is a subcomplex of Ω∗(U) defined by

E(U) = ker(d−1
0 ) ∩ ker(d−1

0 d),

with a projection operator πE : Ω
∗(U) → E(U) such that dπE = πEd,

constructed as follows.
We letD = d−1

0 (d−d0) and P =
∑

k≥0(−1)kDk. Here the summation
is, in fact, finite, since the operator D strictly increases the weight of
forms, but by nilpotency of g, there is an upper bound on the possible
weights. The projection operator πE is defined by

(1) πE = I − Pd−1
0 d− dPd−1

0 .

Since each of the operators d, d−1
0 , and P are weight non-decreasing,

so is the projection πE.
Next, we define

E0(U) = ker(d0) ∩ ker(d−1
0 ) ⊂ Ω∗(U)

and let πE0 : Ω
∗(U) → E0(U) be the orthogonal projection. The Rumin

differential is the map

(2) dc : Ω
∗(U) → E0(U), dcω := πE0πEdπE0ω,

and the pair (E0(U), dc) is the Rumin complex.
By [Rum99, Theorem 1], we have the following result:

Proposition 2.1. The pairs (E(U), d) and (E0(U), dc) are chain com-
plexes. The projections

πE : (E0(U), dc) → (E(U), d)

and

πE0 : (E(U), d) → (E0(U), dc)

are mutually inverse chain maps. Furthermore, the cohomologies of
these chain complexes are isomorphic to the de Rham cohomology.

We recall some further basic properties of the complex E0 and its
projection. Namely, the complex E0 is invariant under the Hodge star
operator, and we have πE0ω∧η = ω∧πE0η = πE0ω∧πE0η for ω ∈ Ωk(U)
and η ∈ Ωl(U) such that ω ∧ η is top-dimensional, i.e., k + l = n for
the topological dimension n of U .

On the level of integrals, the projection πE behaves similarly to πE0

with respect to the wedge product. Namely, if ω ∈ Ωk(U) and η ∈
Ωl
c(U) are such that ω ∧ η is top-dimensional, then∫

U

πEω ∧ η =

∫
U

ω ∧ πEη =

∫
U

πEω ∧ πEη.
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We use the notation ∂cη = (−1)k+1dcη (resp. ∂η = (−1)k+1dη) when
η is a form of degree n− k − 1. Then it holds that∫

U

dcω ∧ η =

∫
U

ω ∧ ∂cη

whenever ω ∈ Ωk(U) and η ∈ Ωn−k−1
c (U). For details, see [Rum01,

Section 2 and Proposition 2.8].

2.4. Gradings and graded maps. Recall that a grading of a vector
space V is a direct sum decomposition V =

⊕
j≥1 V

[j]. A linear map

L : V1 → V2 between graded vector spaces is graded if L(V
[k]
1 ) ⊂ V

[k]
2

for k ≥ 1.
A Lie algebra g is graded if it has a grading compatible with the

Lie bracket. That is, [g[j], g[k]] ⊂ g[j+k] for k, j ≥ 1. A stratification
is a particular case of a grading. Moreover, a graded vector space can
be considered a graded Lie algebra when equipped with the trivial Lie
bracket.

A simply connected Lie group is graded if its Lie algebra is graded.
A Lie group homomorphism L : G1 → G2 between graded simply con-
nected Lie groups is graded if the corresponding Lie algebra homomor-
phism L∗ : g1 → g2 is graded.

2.5. Pansu differential and pullback. LetG1 andG2 be two Carnot
groups.

Suppose that f : U1 → G2 is a (locally) Lipschitz map on a domain
U1 ⊂ G1. By the Pansu–Rademacher Theorem [Pan89], at almost
every g ∈ U1, the map f has a Pansu differential

dPf(g) = lim
λ→0+

δ1/λ ◦ L−1
f(g) ◦ f ◦ Lg ◦ δλ : G1 → G2,

where the convergence is uniform on compact subsets of G1. The Pansu
differential, whenever it exists, is a graded Lie group homomorphism.

For a point g ∈ U1 where the Pansu derivative of f exists, denote

DPf(g) = (Lf(g))∗ ◦ dPf(g)∗ ◦ (Lg−1)∗ : TgG1 → Tf(g)G2.

This leads to a natural adaptation of the usual de Rham pullback by
a smooth map as follows.

Definition 2.2 ([KMX21a]). The Pansu pullback of a smooth k-form
ω ∈ Ω(G2) is the k-form f ∗

Pω defined by

(f ∗
Pω)g(X1, . . . , Xk) = ωf(g)(DPf(g)X1, . . . , DPf(g)Xk)

for X1, . . . , Xk ∈ TgG1 and g ∈ U1.

The Pansu pullback extends for vector-valued forms naturally.

Remark 2.3. If f is a graded homomorphism, then dPf(g) = f every-
where and the Pansu pullback coincides with the classical de Rham
pullback f ∗.
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3. Central extensions

3.1. Central extension of Lie algebras and Lie groups. In this
subsection, we recall standard facts about central extensions of Lie
algebras and Lie groups.

Definition 3.1. Let h be a Lie algebra and ρ :
∧2 h → V a 2-cocycle

with values in a vector space V . Denote the Lie bracket of h by [·, ·]h.
The central extension of h by ρ is a Lie algebra g with a direct sum
decomposition h⊕ V equipped with the Lie bracket

[X + A, Y +B]g = [X, Y ]h + ρ(X, Y ), X, Y ∈ h, A,B ∈ V.

The direct sum decomposition g = h ⊕ V induces a natural inclusion
ι∗ : V → g and a projection π∗ : g → h which are Lie algebra homomor-
phisms. The central extension is denoted by V

ι∗→ g
π∗→ h.

If G and H are simply connected Lie groups with Lie algebras g
and h, respectively, we also refer to the induced short exact sequence
V

ι→ G
π→ H as a central extension of H by ρ.

We often suppress the inclusions maps V → g and h → g to simplify
notation.

Remark 3.2. Central extensions using a 2-cocycle are, in a sense, the
converse to considering a section of a surjective Lie algebra homomor-
phism π∗ : g → h such that ker(π∗) is contained in the center of g.
Indeed, as observed, for instance in [dG07, Section 2], if σ : h → g is a
linear section of π∗, then the map ρ :

∧2 h → ker(π∗) defined by

(3) ρ(X, Y ) = [σ(X), σ(Y )]g − σ([X, Y ]h)

is a 2-cocycle. The central extension of h by ρ is isomorphic to g, with
the isomorphism given by

h⊕ ker(π∗) ∋ X + Y 7→ σ(X) + Y ∈ g.

3.2. Central extension of Carnot groups. We mainly work with
central extensions of Carnot groups. The definition of a central exten-
sion needs to be adapted to account for the additional structure. We
do this in two parts — algebraic and metric — as follows.

Definition 3.3. A central extension V
ι→ G

π→ H by ρ is stratified if
the following properties hold.

(i) The Lie algebras h and g are stratified and the vector space V is
graded.

(ii) The inclusion ι∗ : V → g and the projection π∗ : g → H are graded
with respect to the gradings from (i).

A stratified central extension V
ι→ G

π→ H by ρ is a central extension
of Carnot groups if the following hold.

(iii) The Lie groups G and H are Carnot groups and V is an inner
product space.
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(iv) The inclusion ι∗ : V → g is an isometry and π∗ : g → h is a sub-
metry with respect to the inner product structures from (iii).

A linear map π∗ : g → h between inner product spaces is a submetry
if the restriction of π∗ to ker(π∗)

⊥ is an isometry onto h.
The definition of central extension of Carnot groups is motivated by

the following adaptation of Remark 3.2 to the Carnot setting.

Remark 3.4. Consider Carnot groups G and H together with a graded
homomorphism π : G → H for which π∗ : g → h is a submetry and
ker(π∗) is contained in the center of g.

Equip h⊕ker(π∗) with the direct sum of the inner products on h and
ker(π∗). Next, consider the isometric graded section σ : h → ker(π∗)

⊥ ⊂
g of π∗ : g → h. Then, defining ρ by (3), we obtain a central extension
ker(π∗) → h⊕ ker(π∗) → h by ρ, where

h⊕ ker(π∗) ∋ X + Y 7→ σ(X) + Y ∈ ker(π∗)
⊥ ⊕ ker(π∗) = g

is a graded isomorphism that is an isometry. In particular, the corre-
sponding central extension of Lie groups by ρ is a central extension of
Carnot groups.

We observe that the construction of the sub-Riemannian distance
guarantees that π : G→ H is a metric submetry. That is, π(B(g, r)) =
B(π(g), r) for all balls B(g, r) ⊂ G.

3.3. Basic results about central extensions. We start this sub-
section by considering Lie algebra homomorphisms in the context of
central extensions.

Lemma 3.5. Let V1 → g1 → h1 and V2 → g2 → h2 be central exten-
sions by 2-cocycles ρ1 and ρ2, respectively. Let L : h1 → h2 be a Lie
algebra homomorphism and let φ : V1 → V2 be a linear map.

(i) There exists a Lie algebra homomorphism ψ : g1 → g2 such that
the diagram

V1 g1 h1

V2 g2 h2

φ

π1

ψ L

π2

commutes if and only if there exists a linear map µ : h1 → V2 such
that φ◦ρ1−L∗ρ2 = d0µ. When such a µ exists, a homomorphism
ψ is given by

(4) ψ(X + Y ) = L(X) +
(
µ(X) + φ(Y )

)
∈ h2 ⊕ V2 = g2

for X + Y ∈ h1 ⊕ V1 = g1.
(ii) When the central extensions are stratified and φ and L are graded,

a graded homomorphism ψ is unique up to a graded linear map
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θ : h1 → V2 with [h1, h1] ⊂ ker θ. In particular, if h
[1]
2 = g

[1]
2 , then

the graded homomorphism ψ is unique.

Proof. (i) The linear maps ψ for which the diagram in the claim com-
mutes necessarily have the form (4), where µ : h1 → V2 is a linear map.
We need to check when ψ is a Lie algebra homomorphism.

If Z,Z ′ ∈ h1 ⊕ V1, then

ψ([Z,Z ′]g1) = ψ([π1(Z), π1(Z
′)]h1 + ρ1(π1(Z), π1(Z

′)))

= L([π1(Z), π1(Z
′)]h1) + µ([π1(Z), π1(Z

′)]h1)

+ φ ◦ ρ1(π1(Z), π1(Z ′))

and

[ψ(Z), ψ(Z ′)]g2 = [L(π1(Z)), L(π1(Z
′))]h2 + ρ2(L(π1(Z)), L(π1(Z

′))).

Since L is by assumption a Lie algebra homomorphism, the h2 compo-
nents of the above expressions agree. Comparing the V2 components
and writing µ([·, ·]h1) as −d0µ(·, ·), we observe that ψ is a Lie algebra
homomorphism if and only if −d0µ+ φ ◦ ρ1 = L∗ρ2.
(ii) Suppose ψ and ψ′ are two graded homomorphisms from (i). By

(4), their difference is

ψ(X, Y )− ψ′(X, Y ) = µ(X)− µ′(X) ∈ V2.

The difference θ = µ− µ′ : h1 → V2 is a graded linear map with d0θ =

d0µ − d0µ
′ = 0, so [h1, h1] ⊂ ker θ. If, furthermore, h

[1]
2 = g

[1]
2 , then

V
[1]
2 = 0. Then the graded assumption implies h

[1]
1 ⊂ ker θ and thus

θ = 0, so the graded homomorphism ψ is unique. □

Given a basis v1, . . . , vm of V , we may decompose the 2-cocycle
ρ :
∧2 h → V into 2-cocycles ρj :

∧2 h → R such that

ρ(X, Y ) =
m∑
j=1

ρj(X, Y )vj, X, Y ∈ h.

We denote ρ =
∑m

j=1 vjρ
j for brevity.

Within the proofs of our main results, it will be convenient to as-
sume that the cocycles ρj are either pairwise orthogonal in the Ru-
min complex, see Section 2.3, or are contained in the Rumin complex
E0 themselves. For this purpose, we recall a limited form of [dG07,
Lemma 3]:

Lemma 3.6. Let v1, . . . , vm be a basis of V and let V → G→ H be a
central extension by a cocycle ρ =

∑m
j=1 vjρ

j :
∧2 h → V . Suppose that

ρ̃ =
∑m

j=1 vj ρ̃
j :
∧2 h → V is another cocycle and ω1, . . . , ωm :

∧1 h →
R are 1-forms for which the equality

span{ρ1, . . . , ρm} = span{ρ̃1 + d0ω
1, . . . , ρ̃m + d0ω

m}
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of R-linear spans holds in the space of 2-forms. Then a central ex-
tension V → G̃ → H by ρ̃ is isomorphic to the central extension
V → G→ H by ρ via a commutative diagram

V G H

V G̃ H

φ ψ id

Proof. By the assumption on spanned subspaces, there exists an in-
vertible matrix A = (aij) ∈ Rm×m such that ρ̃i + d0ω

i =
∑m

j=1 aijρ
j.

Indeed, denote W = span{ρ1, . . . , ρm} and consider the two maps
E1, E2 : Rm → W defined by E1(ei) = ρi and E2(ei) = ρ̃i + d0ω

i, using
the standard basis of Rm. Fixing any isomorphism L : kerE1 → kerE2,
there exists an isomorphism A : Rm → Rm with the short exact se-
quence of a pair

0 kerE1 Rm W 0

0 kerE2 Rm W 0

L A

E1

id

E2

If we let φ : V → V be the linear map whose matrix in the basis
v1, . . . , vm is A, we have φ ◦ ρ − ρ̃ = d0ω for ω =

∑m
j=1 vjω

j and the
map

ψ : g → g̃, ψ(X + Y ) = X + (ω(X) + φ(Y )), X ∈ h, Y ∈ V

is a Lie algebra homomorphism by Lemma 3.5. Since φ is invertible,
ψ is an isomorphism of Lie groups. □

Remark 3.7. In our applications of Lemma 3.6, the extension V
ι→ G

π→
H will be a central extension of Carnot groups in which case we will
define a Carnot structure on G̃ through the isomorphism ψ : G → G̃
given by the lemma. More precisely, the Lie algebra g̃ = h ⊕ V has
a projection π̃∗ : g̃ → h. Consider ι∗ : V → g and the right-inverse
σ : h → ι∗(V )⊥ of π∗ : g → h. Define an inner product and grading
on g̃ for which ι̃∗ := ψ ◦ ι∗ : V → g̃ and σ̃ := ψ ◦ σ : h → g̃ are
graded isometries with orthogonal images. Then π̃∗ is a submetry with

ker(π̃∗)
⊥ = im(σ̃), and the central extension V

ι̃→ G̃
π̃→ H by ρ̃ is a

central extension of Carnot groups.

The following lemma allows us to generate further central extensions
of Carnot groups from graded linear maps. We use the construction in
Lemma 8.2 as a simplifying tool for the proofs of our main results.

Lemma 3.8. Let V1 → G1 → H1 and V2 → G2 → H2 be central
extensions of Carnot groups by 2-cocycles ρ1 and ρ2, respectively, and
let φ : V1 → V2 be a graded linear map. Then ρ̂1 := φ ◦ρ1 is a 2-cocycle
and defines a central extension im(φ) → ĝ1 → h1 by ρ̂1. The central
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extension im(φ) → Ĝ1 → H1 by ρ̂1 is a central extension of Carnot
groups when equipped with the following structure.

(1) The stratification of the Lie algebra is given by ĝ
[j]
1 = h

[j]
1 ⊕

φ(V
[j]
1 ) for j ≥ 1.

(2) The inner product on ĝ1 is the direct sum of the inner products
on h1 and im(φ) ⊂ g2.

Moreover, the map ψ : G1 → Ĝ1 given by

ψ∗ : g1 = h1 ⊕ V1 → ĝ1 = h1 ⊕ im(φ), ψ∗(X + Y ) = X + φ(Y ),

is a surjective graded homomorphism.

Proof. The fact that ρ̂1 is a 2-cocycle follows from the linearity of φ.
By Lemma 3.5, the map ψ∗ is a Lie algebra homomorphism.

We observe that ρ1(h
[1]
1 , h

[j]
1 ) ⊂ V

[j+1]
1 which immediately implies that

[ĝ
[1]
1 , ĝ

[j]
1 ] = ĝ

[j+1]
1 for j ≥ 1. Thus (1) indeed defines a stratification.

The requirements on the inner products are built-in to (2). The fact
that ψ∗ is graded and surjective is clear. In conclusion, the central
extension im(φ) → Ĝ1 → H1 by ρ̂1 is a central extension of Carnot
groups. □

4. Abelian factors in contact lifts

In order to simplify later proofs, we show that any abelian Carnot
group factors added by the central extensions are irrelevant for our
existence results for contact lifts.

For this section, we consider central extensions of Carnot groups
V1 → G1 → H1 and V2 → G2 → H2 and a smooth contact map
f : U1 → H2 from a domain U1 ⊂ H1. Let W1 ⊂ V1 be the horizontal
component of the central extension V1 → G1 → H1 so that the ex-
tended Carnot group can decomposed as a direct product of Carnot
groups G1 ≃ G̃1 ×W1, where G̃1 = G1/W1. We denote similarly on
the codomain the horizontal component W2 ⊂ V2 and the quotient
G̃2 = G2/W2.

4.1. Elimination of abelian factors from the codomain. On the
codomain, the contact lift condition imposes no restrictions on the
abelian factor.

Lemma 4.1. If there exists a smooth contact lift F : G1 ⊃ π−1
1 (U1) →

G2 of f , then there also exist a smooth contact lift F̃ : π−1
1 (U1) → G̃2

of f and a smooth map h : π−1
1 (U1) → W2 such that F is the pointwise

product F = F̃ ·h. Conversely, if F̃ : π−1
1 (U1) → G̃2 is a smooth contact

lift of f , then the pointwise product F = F̃ · h is a smooth contact lift
of f for every smooth map h : π−1

1 (U1) → W2.



LIFTS TO CENTRAL EXTENSIONS 14

Proof. Since G2 is a direct product of the Carnot groups G̃2 and W2,
any map F : G1 ⊃ π−1

1 (U1) → G2 may be written as a pointwise prod-
uct F = F̃ · h for some maps F̃ : π−1

1 (U1) → G̃2 and h : π
−1
1 (U1) → W2.

For a direct product of Carnot groups, the horizontal distribution is
the sum of the horizontal distributions. Hence F is contact if and only
if both F̃ and h are contact. Since W2 is an abelian Carnot group, the
contact property for h trivially holds, so F is contact if and only if F̃
is contact.

Finally, we observe that W2 ⊂ V2 ⊂ kerπ2, so π2 ◦F = π̃2 ◦ F̃ . Hence
F is a lift of f if and only if F̃ is a lift of f . □

4.2. Elimination of abelian factors from the domain. On the do-
main, any abelian factor in a contact lift can be quotiented away when
the central extension on the codomain does not increase horizontal
rank.

Lemma 4.2. If there exists a smooth contact lift F̃ : G1 ⊃ π−1
1 (U1) →

G̃2 of f , then F̃ (gx) = F̃ (g) for all g ∈ π−1
1 (U1) and x ∈ W1, and the

induced quotient map ˜̃F : G̃1 ⊃ π̃−1
1 (U1) → G̃2 is a smooth contact lift

of f . Conversely, if ˜̃F : π̃−1
1 (U1) → G̃2 is a smooth contact lift of f ,

then composing with the quotient map π : G1 → G̃1 defines a smooth

contact lift F̃ = ˜̃F ◦ π|π−1
1 (U1)

of f .

Proof. The converse claim is immediate since the quotient projection
π : G1 → G̃1 is contact and the composition of contact maps is contact.
For the other claim, suppose that we have a contact lift F̃ : G1 ⊃

π−1
1 (U1) → G̃2 of f . Fix g ∈ π−1

1 (U1) and x ∈ W1, and consider the
horizontal line segment

γ : [0, 1] → π−1
1 (U1) ⊂ G1, γ(t) = g · tx.

Since F̃ is a contact lift of f , and by construction rank G̃2 = rankH2,
the horizontal curve F̃ ◦γ in G̃2 is the unique lift of the horizontal curve
f ◦ π1 ◦ γ starting from the point F̃ ◦ γ(0). However, the projection
is the constant curve f ◦ π1 ◦ γ(t) = f(g), so also the lift F̃ ◦ γ is a
constant curve. Hence

F̃ (gx) = F̃ ◦ γ(1) = F̃ ◦ γ(0) = F̃ (g).

Consequently, there exists a unique map ˜̃F : G̃1 ⊃ π̃−1
1 (U1) → G̃2 such

that F̃ = ˜̃F ◦ π.
Since the quotient projection π : G1 → G̃1 is surjective,

˜̃F is a lift of

f . The map ˜̃F is contact since also the derivative of F̃ factors through
the quotient projection π : G1 → G̃1 and the horizontal distribution of
the direct product G1 ≃ G̃1 ×W1 contains the horizontal distribution
of G̃1. □
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5. Contact lifts via path lifting

This section has three subsections. The first subsection connects
central extensions and horizontal lifts of curves. The second subsection
rephrases the existence of contact lifts in terms of horizontal curves.
The third subsection reformulates the results of the second subsection
in terms of horizontal exactness.

5.1. A potential of an extension cocycle. The subsequent lemma
constructs a potential for a cocycle defining a central extension.

Lemma 5.1. Let V
ι→ G

π→ H be a central extension of Carnot
groups by ρ such that rank(G) = rank(H). There exists a 1-form
α ∈ Ω1(H;V ) such that

(i) dα = ρ, and
(ii) if γ : [0, 1] → G is a horizontal curve starting from γ(0) = eG,

then

logG(γ(1)) = logH(π ◦ γ(1)) +
∫
π◦γ

α ∈ h⊕ V = g.

Proof. The direct sum decomposition of the vector space g = h ⊕ V
defines a projection πV : g → V . Consider the map x = πV ◦ logG : G→
V , which gives the V -component of exponential coordinates in G. The
projection πV can also be viewed as a V -valued 1-form on g. Let
θ ∈ Ω1(G;V ) be its left-invariant extension. We claim that

(5) dx− θ = π∗α

for some 1-form α ∈ Ω1(H;V ), and that this 1-form α has the required
properties.

To see that such a form α exists, it suffices to verify that (dx −
θ)(Y ) = 0 for any left-invariant vector field Y with Y (eG) ∈ kerπ = V .
Since V is central, we have

logG(exp(X) exp(tY )) = X + tY for any X ∈ g.

Consequently, at any point g = exp(X), we have

(d logG)g(Y (g)) =
d

dt
logG(g exp(tY ))|t=0 = Y.

By the chain rule, we deduce

dx(Y (g)) = d(πV ◦ logG)(Y (g)) = πV ◦ d logG(Y (g)) = θ(Y (g)),

proving the required identity (dx − θ)(Y ) = 0. Hence (5) defines a
1-form α ∈ Ω1(H;V ).
Property (i) for α follows immediately from (5) and the observation

that dθ = −π∗ρ.
For property (ii), we first observe that

logG(γ(1)) = logH(π ◦ γ(1)) + x(γ(1))
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by the definition of the map x. By (5), we have dx = θ + π∗α. Since
γ is horizontal, we have θ(γ̇) = 0 almost everywhere. The initial point
of the curve is the identity, so

x(γ(1)) = x(γ(1))− x(γ(0)) =

∫
γ

dx =

∫
γ

π∗α =

∫
π◦γ

α,

proving the claim. □

Remark 5.2. An explicit expression for the 1-form α in Lemma 5.1 can
be calculated from the derivative of the exponential map. The resulting
expression evaluated at a point g = exp(X) ∈ G, for a left-invariant
vector field Y , has the form

αg(Y (g)) = ρ(X, ζ(adX)Y ),

where ζ is the analytic function ζ(z) = 1
1−e−z − 1

z
. Here, nilpotency

of adX allows us to interpret ζ(adX) using a finite part of the power
series expansion of ζ.

For the rest of this section, we fix central extensions of Carnot groups
V1 → G1 → H1 and V2 → G2 → H2 by 2-cocycles ρ1 and ρ2, respec-
tively.

5.2. Preservation of closed horizontal curves. In this subsection,
we connect the existence of contact lifts to a condition on closed hori-
zontal curves.

Given a Carnot group H, a point h ∈ H, and a domain U ⊂ H, we
denote by ΓLIP(h, U) the collection of closed Lipschitz curves γ : [0, 1] →
U based at γ(0) = h = γ(1).
For a central extension V → G→ H of Carnot groups by a 2-cocycle

ρ ∈ Ω2(H;V ), we denote by ΓρLIP(h, U) ⊂ ΓLIP(h, U) the subcollection
which admit a horizontal lift to G that is closed. By Lemma 5.1, and
representing G as a direct product G ≃ G̃ × W , where W ⊂ V is
the horizontal component of the central extension V → G → H, the
subcollection can be characterized as

ΓρLIP(h, U) = {γ ∈ ΓLIP(h, U) :

∫
γ

α = 0},

where α ∈ Ω1(H;V ) satisfies dα = ρ. Note that the collection is
independent of the specific potential since

∫
γ
dy = 0 for any closed

curve γ ∈ ΓLIP(h, U) and any exact 1-form dy ∈ Ω1(H;V ).

Lemma 5.3. Let U1 ⊂ H1 and Ũ1 ⊂ π−1
1 (U1) ⊂ G1 be domains. A

smooth contact map f : U1 → H2 admits a smooth contact lift F : Ũ1 →
G2 if and only if

(6) (f ◦ π1)
(
ΓLIP(g, Ũ1)

)
⊂ Γρ2LIP(f(π1(g)), H2)

for some g ∈ Ũ1.
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Proof. If F : Ũ1 → G2 is a smooth contact lift of f : U1 → H2 and
γ ∈ ΓLIP(g, Ũ1) is a closed horizontal curve based at an arbitrary g ∈
Ũ1, then F ◦ γ is a closed horizontal curve in G2 based at F (g) whose
projection to H2 is the closed horizontal curve π2 ◦ F ◦ γ = f ◦ π1 ◦ γ
based at f(π1(g)). Thus (6) follows.

For the converse direction, we first observe that by Lemma 4.1, it
suffices to consider the case rank(G2) = rank(H2). Suppose that (6)
holds for some g ∈ Ũ1. We will construct the lift F by a standard
path lifting argument seen, for example, in [CT95, Theorem 5.3]. We
formulate the argument using control theory. We refer the reader to
[ABB20, Section 8] for background on the endpoint map.

Fix a basepoint p ∈ π−1
2 (f(π1(g))). We construct a smooth contact

lift F : Ũ1 → G2 of f with F (g) = p. Recall that for every control u ∈
L2([0, 1], g

[1]
1 ), there exists a corresponding trajectory γu : [0, 1] → G1

obtained as the unique solution of the Cauchy problem

γ̇u(t) = (Lγu(t))∗u(t), γu(0) = g.

This defines the endpoint map

Endg : L
2([0, 1]; g

[1]
1 ) → G1, Endg(u) = γu(1),

which by [ABB20, Proposition 8.5] is smooth. We will also consider
the two analogously defined endpoint maps

Endf(π1(g)) : L
2([0, 1]; h

[1]
2 ) → H2,

Endp : L
2([0, 1]; g

[1]
2 ) → G2.

We have h
[1]
2 = g

[1]
2 , so these latter two endpoint maps have the same

domain. We note that Endf(π1(g)) = π2 ◦ Endp by construction.

Let W ⊂ L2([0, 1]; g
[1]
1 ) be the open subset of controls whose trajec-

tories satisfy γu([0, 1]) ⊂ Ũ1. Since Ũ1 is a domain, Endp(W ) = Ũ1.

The smooth contact map f ◦ π1 : Ũ1 → H2 induces a smooth map

(f ◦ π1)∗ : W → L2([0, 1]; h
[1]
2 ) given by

((f ◦ π1)∗u)(t) = (L−1
f◦π1◦γu(t))∗

d

dt
(f ◦ π1 ◦ γu(t)).

We define Φ := Endp ◦(f ◦π1)∗ : W → G2. Assumption (6) implies that
the value Φ(u) depends only on Endg(u) for u ∈ W . Thus there exists

a uniquely defined map F : Ũ1 → G2 for which F ◦ Endg|W = Φ.

By a perturbation argument, we see that, for any h ∈ Ũ1, there exists
a control u ∈ W ∩End−1

g (h) such that the differential (dEndg)u has full

rank. So, by the implicit function theorem, every h ∈ Ũ1 has an open
neighborhood W ⊂ Ũ1 such that a smooth right inverse Ψ: V → W
of Endg exists. Therefore F |W = Φ ◦ Ψ is smooth. It follows that F

is smooth. Moreover, π2 ◦ F = f ◦ π1. Indeed, if γ : [0, 1] → Ũ1 is
a horizontal curve, then F ◦ γ is a horizontal lift of f ◦ π1 ◦ γ by the
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construction, the equality Endf(π1(g)) = π2 ◦Endp, and the assumption
(6), and thus the lifting property follows. It also follows that F is
contact. That is, F is a smooth contact lift of f . □

5.3. Horizontal exactness. In this subsection, we reformulate the
path lifting result, Lemma 5.3, using horizontal exactness. This leads
to the following definition.

Definition 5.4. Let U be an open set in a Carnot group and V a vector
space. A 1-form ω ∈ Ω1(U ;V ) is horizontally exact if there exists a
smooth function x : U → V such that the horizontal components of dx
and ω are identical.

Proposition 5.5. Let U1 ⊂ H1 and Ũ1 ⊂ G1 be domains with π1(Ũ1) =
U1. Let α2 ∈ Ω1(H2;V2) be a potential of ρ2. A smooth contact map
f : H1 ⊃ U1 → H2 admits a smooth contact lift F : Ũ1 → G2 if and
only if (f ◦ π1)∗α2 is horizontally exact in Ũ1.

Proof. We consider a direct product G2 ≃ G̃2 × V
[1]
2 for rank(G̃2) =

rank(H2). Note that the 2-cocycle ρ2 has a potential α2 taking values

in (V
[1]
2 )⊥ = V

[2]
2 ⊕ · · · ⊕ V

[s]
2 because ρ2 has no V

[1]
2 -components. Since

two potentials differ by an exact term, it suffices to consider this spe-
cific potential. Using this observation, the claim reduces to the case
rank(G2) = rank(H2) by Lemma 4.1. After this reduction, we may also
consider the potential used in Lemma 5.1.

Suppose (f ◦π1)∗α2 is horizontally exact in Ũ1. That is, suppose that
there exists a smooth y : Ũ1 → V2 such that the horizontal components
of dy coincide with the horizontal components of (f ◦π1)∗α2. Whenever
γ : [0, 1] → Ũ1 is a closed horizontal curve, we deduce that

0 =

∫
γ

dy =

∫
γ

(f ◦ π1)∗α2 =

∫
f◦π1◦γ

α2.

By Lemma 5.3, f admits a smooth contact lift.
For the converse direction, suppose that F : Ũ1 → G2 is a smooth

contact lift of f .
Let x : G2 → V2 be the V2-component of exponential coordinates on

G2 and let y = x ◦ F . By (5) and the lift condition, we have

(7) dy = F ∗dx = F ∗θ2 + F ∗π∗
2α2 = F ∗θ2 + (f ◦ π1)∗α2,

where θ2 ∈ Ω1(G2;V2) is the left-invariant extension of the projection
g2 → V2; here the projection is understood as a V2-valued 1-form.
Since F is contact and rank(G2) = rank(H2), F

∗θ2 has no horizontal
component. Hence (7) implies that (f ◦ π1)∗α2 is horizontally exact.
The equivalence follows. □
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6. Structure of contact lifts

This section has three subsections. The first subsection concerns
the uniqueness of lifts up to left-translations. The second subsection
shows that the lifting problem in simply connected domains is local.
The third subsection shows that a lift is a homomorphism in the fiber
direction of the projection.

In this section, we consider central extensions of Carnot groups V1 →
G1 → H1 and V2 → G2 → H2 by 2-cocycles ρ1 and ρ2, respectively.

6.1. Uniqueness of lifts. When the codomain central extension pre-
serves horizontal rank, smooth contact lifts are unique up to a left-
translation by an element of V2.

Lemma 6.1. Suppose rank(H2) = rank(G2) and let U1 ⊂ H1 be a
domain. If F1, F2 : G1 ⊃ π−1

1 (U1) → G2 are smooth contact lifts of a
smooth contact map f : H1 ⊃ U1 → H2, then there exists k ∈ V2 such
that F = kF2.

Proof. Since rank(H2) = rank(G2), the lift condition π2 ◦F1 = f ◦π1 =
π2 ◦ F2 implies that the horizontal derivatives of the smooth maps F1

and F2 agree everywhere. Since the set U1 is open and connected, it
is horizontally path connected, so it follows that F1 = kF2 for some
constant element k ∈ G2. The lift condition further implies that k ∈
kerπ2 = V2. □

6.2. Lifts in simply connected domains. The lifting problem on
simply connected domains is local in the sense formulated in the sub-
sequent lemmas.

Lemma 6.2. Let U1 ⊂ H1 and Ũ1 ⊂ G1 be simply connected domains
with π1(Ũ1) = U1. Then a smooth contact map f : H1 ⊃ U1 → H2

admits a smooth contact lift F : Ũ1 → G2 if and only if it admits a
smooth contact lift F : π−1

1 (U1) → G2.

Proof. By Proposition 5.5, it suffices to check that (f ◦ π1)∗α2 is hor-
izontally exact in Ũ1 if and only if it is horizontally exact in the full
cylinder π−1

1 (U1). Since both domains are simply connected, horizontal
exactness is equivalent to being Rumin closed. The claim follows since
the form (f ◦ π1)∗α2 is invariant under translations by V1 and being
Rumin closed is a local property. □

Lemma 6.3. Let U1 ⊂ H1 be a simply connected domain and let
f : H1 ⊃ U1 → H2 be a smooth contact map. Suppose that, for every
g ∈ U1, there exists an open neighborhood Ug ⊂ U1 for which the restric-
tion f |Ug

: Ug → H2 admits a smooth contact lift Fg : π
−1
1 (Ug) → G2.

Then the unrestricted map f : U1 → H2 admits a smooth contact lift
F : π−1

1 (U1) → G2.
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Proof. By Lemma 4.1, it suffices to consider the case when rank(H2) =
rank(G2). Let h = f ◦ π1|π−1

1 (U1)
and let α2 be a potential for ρ2.

By our assumption, for every g ∈ U1, the form h∗α2 is horizontally
exact in the domain π−1

1 (Ug) by Proposition 5.5. In particular, the
horizontal projection πE0h

∗α2 is Rumin exact in π−1
1 (Ug), and thus

Rumin closed in π−1
1 (U1) by a covering argument. Since the Rumin

cohomology is isomorphic to the de Rham one and π−1
1 (U1) is simply

connected, it follows that πE0h
∗α2 is Rumin exact. Equivalently, h∗α2

is horizontally exact. Reapplying Proposition 5.5 proves that f admits
a lift into π−1

1 (U1). □

Remark 6.4. Lemma 6.3 can also be proved using more classical topo-
logical arguments in the vein of Čech cohomology without invoking
Proposition 5.5. In the subsequent argument, we lose no generality in
assuming that {Ug}g∈U1 is a good cover of U1, i.e. the finite intersec-
tions of {Ug}g∈U1 are contractible. It suffices for us that Ug ∩ Ug′ is
connected.

Lemma 4.1 allows us to reduce to the case rank(H2) = rank(G2). By
the uniqueness of lifts given in Lemma 6.1, if Ug ∩ Ug′ ̸= ∅ for some
g, g′ ∈ U1, then there exists an element ϕ(g, g′) ∈ V2 such that Fg =
ϕ(g, g′)Fg′ on the intersection π−1

1 (Ug ∩ Ug′). Then, for any threefold
intersection Ug∩Ug′∩Ug′′ ̸= ∅, we obtain a 1-cocycle type compatibility
condition

(8) ϕ(g, g′′) = ϕ(g, g′) + ϕ(g′, g′′).

Using (8) as definition of ϕ(g, g′′) when ϕ(g, g′) and ϕ(g′, g′′) are
already defined, we extend ϕ to a map ϕ : U1 × U1 → V2 using finite
chains of open sets Ugi . Since U1 is simply connected, this extension
is well defined, and by construction satisfies (8) for all g, g′, g′′ ∈ U1.
Then, by fixing a basepoint p ∈ U1, we may define a map

F : π−1
1 (U1) → G2, F (x) = ϕ(p, π1(x))Fπ1(x)(x).

Condition (8) implies that F is a left-translation of Fg by an element
in V2 in each Ug and hence a smooth contact lift of f .

6.3. The fiber component of a lift. When the horizontal ranks on
the codomain side coincide, a smooth contact lift is a homomorphism
in the fiber direction of the projection.

Lemma 6.5. Let V1 → G1 → H1 and V2 → G2 → H2 be central exten-
sions of Carnot groups such that rank(G2) = rank(H2). Let U1 ⊂ H1

be a domain and F : π−1
1 (U1) → G2 a smooth contact lift of a smooth

contact map f : U1 → H2. Then there exists a Lie group homomor-
phism Φ: V1 → V2 such that F (gk) = F (g)Φ(k) for all g ∈ π−1

1 (U1)
and k ∈ V1.

Proof. By the lift assumption, we have

π2 ◦ F (gk) = f ◦ π1(gk) = f ◦ π1(g) = π2 ◦ F (g).
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Thus, for each g ∈ π−1
1 (U1) and k ∈ V1, there exists some Φ̃(g, k) ∈ V2

such that F (gk) = F (g)Φ̃(g, k). We claim that Φ̃(g, k) is constant in
g ∈ π−1

1 (U1). That is, there is a well defined map Φ: V1 → V2 such
that Φ̃(g, k) = Φ(k) for g ∈ π−1

1 (U1) and k ∈ V1. By assumption, U1 is
connected, so it suffices to prove that g 7→ Φ̃(g, k) is locally constant
for fixed k ∈ V1.

Let B′ be a ball that is compactly contained in π−1
1 (U1). Let B be

a ball with the same center and half the radius, and let L be an upper
bound for the operator norm of the horizontal differential of F on B′.
Let B′′ be a left-translation of B′ by k. Since f ◦ π1 is invariant under
the action of V1, it holds that L is an upper bound for the operator
norm of the horizontal differential of f ◦π1 on B′′. Since F is a contact
lift of f and rank(G2) = rank(H2), it follows that the operator norm
of the horizontal differential of F is also bounded by L on B′′. Thus F
is L-Lipschitz on the left-translation of B by k. We tacitly use this in
the subsequent argument.

Let g, h ∈ B. Since the extensions are central, elements of V1 com-
mute with elements of G1, and similarly for V2. By left-invariance of
the distance, we compute that

d(Φ̃(g, k), Φ̃(h, k)) = d(F (g)Φ̃(g, k), F (g)Φ̃(h, k))

≤ d(F (g)Φ̃(g, k), F (h)Φ̃(h, k))

+ d(F (h)Φ̃(h, k), F (g)Φ̃(h, k))

= d(F (gk), F (hk)) + d(F (h), F (g))

≤ Ld(gk, hk) + Ld(g, h)

= 2Ld(g, h).

That is, we have shown that g 7→ Φ̃(g, k) is a Lipschitz map B →
V2 ⊂ G2. By the equal rank assumption, V2 does not contain any
horizontal directions. Hence the only possible Lipschitz maps B → V2
are constants. Consequently, g 7→ Φ̃(g, k) is locally constant for k ∈ V1.

Next, we show that Φ: V1 → V2 is a group homomorphism. Let
k1, k2 ∈ V1 and let g ∈ π−1

1 (U1). Applying the definition of Φ̃ with the
pair (g, k1k2) shows

F (gk1k2) = F (g)Φ(k1k2),

whereas applying the definition with the pairs (gk1, k2) and (g, k1)
yields

F (gk1k2) = F (gk1)Φ(k2) = F (g)Φ(k1)Φ(k2).

Canceling out F (g) implies that Φ is a group homomorphism.
Finally, we observe that Φ(k) = F (g)−1F (gk) for any g ∈ G1 and

k ∈ V1, so the smoothness of Φ follows. □
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7. Lifts and the Rumin complex

In this section, we prove Theorem 1.1. Since the Rumin differential
does not commute with the pullback, we need some preliminary results
about the Rumin differential of a 1-form in the context of central ex-
tensions. We recall that for a left-invariant 2-cocycle ρ, we have that
ρ ∈ im(d0)

⊥ implies ρ ∈ E0 ∩ E, and ρ ∈ E0 implies ρ ∈ im(d0)
⊥.

Lemma 7.1. Let V
ι→ G

π→ H be a central extension of Carnot groups
given by a 2-cocycle ρ ∈ Ω2(H;V ), and let θ ∈ Ω1(G;V ) be the left-
invariant 1-form extending the orthogonal projection g = h ⊕ V → V .
Let v1, . . . , vm be a basis of V and decompose θ =

∑m
j=1 vjθ

j and ρ =∑m
j=1 vjρ

j. Suppose that ρ1, . . . , ρm are all in E0(H) and are pairwise

orthogonal and that |ρj| ∈ {0, 1} for 1 ≤ j ≤ m. Let U ⊂ H be an
open set. Then every 1-form ω ∈ E1

0(U) satisfies

πEπ
∗ω = π∗πEω +

m∑
j=1

(
⟨dcω, ρj⟩ ◦ π

)
πE⊥

0
θj,

where πE⊥
0
is the orthogonal projection to E⊥

0 (π
−1(U)).

Proof. Denote Ũ := π−1(U). By construction of the central extension,
the left-invariant 1-forms of G are linear combinations of the pullbacks
of left-invariant 1-forms in H and the 1-forms θj. As π∗ρ = −d0θ,
the image of d0 : Ω

1(Ũ) → Ω2(Ũ) is the C∞(Ũ)-module spanned by
π∗d0Ω

1(U) and the forms π∗ρ1, . . . , π∗ρm. Recall that the inner product
in g is such that π∗ : g → h is a submersion. It follows that for any
ω ∈ Ω1(Ũ), the 2-form ω ∧ θj is in im(d0)

⊥.
Any 2-form κ ∈ Ω2(Ũ) has a representation

κ = cπ∗γ +
m∑
i=1

ciπ
∗γi ∧ θi +

∑
i<j

ci,jθ
i ∧ θj,

for some γ ∈ Ω2(U), γi ∈ Ω1(U), and c, ci, ci,j ∈ C∞(Ũ). Since the last
two sums are orthogonal to im(d0), and by assumption the forms ρj are
pairwise orthogonal, the orthogonal projection of κ to im(d0) satisfies

(9) πim(d0)κ = πim(d0)(cπ
∗γ) = cπ∗(πim(d0)γ) +

m∑
j=1

⟨cπ∗γ, π∗ρj⟩π∗ρj.

For 1-forms, we have E1
0 = ker d0. Denote θ̃

j = πE⊥
0
θj, for 1 ≤ j ≤ m,

so that we have θ̃j = d−1
0 d0θ

j = d−1
0 (−π∗ρj). From (9), it follows that

(10) d−1
0 κ = d−1

0 (cπ∗γ) = cπ∗(d−1
0 γ)−

m∑
j=1

c
(
⟨γ, ρj⟩ ◦ π

)
θ̃j.

Let ω ∈ Ω1(U) be a 1-form. To compute πEπ
∗ω for the projection

πE given by (1), we first compute the powers Dkω for the operator
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D = d−1
0 (d− d0). Denote c

0
j = 0 and

ckj = ⟨dDk−1ω, ρj⟩
for 1 ≤ j ≤ m and k ≥ 1. We claim that

(11) Dkπ∗ω = π∗Dkω −
m∑
j=1

(ckj ◦ π)θ̃j for k ≥ 0.

The claim clearly holds for k = 0, so suppose inductively that the
claim has been verified for some k ≥ 0. Since π∗ commutes with d and
d0, and since (d− d0)θ̃

j = 0, we have

(d− d0)D
kπ∗ω = π∗(d− d0)D

kω −
m∑
j=1

π∗((d− d0)c
k
j ) ∧ θ̃j.

Applying (10) for κ = (d− d0)D
kπ∗ω gives

Dk+1π∗ω = π∗Dk+1ω −
m∑
j=1

(
⟨(d− d0)D

kω, ρj⟩ ◦ π
)
θ̃j.

Since ρj ∈ im(d0)
⊥, we have

⟨(d− d0)D
kω, ρj⟩ = ⟨dDkω, ρj⟩ = ck+1

j

and the claim (11) follows.
Next, we consider the operator P =

∑
k≥0(−1)kDk. Using (11), we

obtain

(12) Pπ∗ω = π∗Pω +
m∑
j=1

(
⟨dPω, ρj⟩ ◦ π

)
θ̃j.

Since d−1
0 is the zero map for 1-forms, formula (1) simplifies down to

πE = I − Pd−1
0 d for 1-forms. Applying (10) for κ = dπ∗ω yields

d−1
0 dπ∗ω = π∗d−1

0 dω −
m∑
j=1

(
⟨dω, ρj⟩ ◦ π

)
θ̃j.(13)

We apply the operator P to (13) and then use (12) for the form d−1
0 dω.

This implies that

Pd−1
0 dπ∗ω = π∗Pd−1

0 dω +
m∑
j=1

(
⟨dPd−1

0 dω, ρj⟩ ◦ π
)
θ̃j

−
m∑
j=1

P
((

⟨dω, ρj⟩ ◦ π
)
θ̃j
)
.

In the earlier computation for the powers Dkπ∗ω, we already saw the
fact that

D
((

⟨dω, ρj⟩ ◦ π
)
θ̃j
)
= d−1

0

(
π∗(d− d0)⟨dω, ρj⟩ ∧ θ̃j

)
= 0,
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which implies that P
(
(⟨dω, ρj⟩ ◦ π) θ̃j

)
= (⟨dω, ρj⟩ ◦ π) θ̃j. Therefore

Pd−1
0 dπ∗ω = π∗Pd−1

0 dω +
m∑
j=1

(
⟨d(Pd−1

0 d− I)ω, ρj⟩ ◦ π
)
θ̃j

= π∗Pd−1
0 dω −

m∑
j=1

(
⟨dπEω, ρj⟩ ◦ π

)
θ̃j.

We conclude that

πEπ
∗ω = π∗πEω +

m∑
j=1

(
⟨dπEω, ρj⟩ ◦ π

)
θ̃j.

Recalling ρj ∈ E0(H), we see that

⟨dπEω, ρj⟩ = ⟨πE0dπEω, ρ
j⟩.

Since dπE = πEd, by the definition (2) of the Rumin differential, we
have dcω = πE0dπEω whenever ω ∈ E1

0(U), concluding the proof. □

In the following lemma, we apply Lemma 7.1 to horizontal exactness
on simply connected domains.

Lemma 7.2. Let V
ι→ G

π→ H be a central extension of Carnot groups
by ρ, and let v1, . . . , vm be a basis of V and decompose ρ =

∑m
j=1 vjρ

j.

Let ω ∈ Ω1(U ;W ) be a 1-form in a simply connected domain U ⊂ H
for a finite-dimensional vector spaceW . Then π∗ω is horizontally exact
in π−1(U) if and only if dcω =

∑m
j=1 cjπE0ρ

j in U for some constant
vectors cj ∈ W , 1 ≤ j ≤ m.

Proof. Consider a basis w1, . . . , wl for W and denote ω =
∑l

j=1wjω
j.

Then ω is horizontally exact if and only if each ωj is horizontally exact
for 1 ≤ j ≤ l. Hence the general claim follows from the real-valued
case. So we assume W = R from this point onwards.

Consider orthonormal and left-invariant ρ̂1, . . . , ρ̂k spanning the same
subspace as {πE0ρ

1, . . . , πE0ρ
m}. In case k < m, let ρ̂j = 0 for k + 1 ≤

j ≤ m. We denote ρ̂ =
∑m

j=1 vj ρ̂
j. Consider the central extension of

Lie groups V → Ĝ
π̂→ H by ρ̂ and the Lie group isomorphism from G

to Ĝ obtained from Lemma 3.6. We equip Ĝ with a Carnot structure
making the Lie group isomorphism an isomorphism of Carnot groups,
cf. Remark 3.7. It follows that π∗ω is horizontally exact if and only if
π̂∗ω is horizontally exact.
By definition, horizontal exactness means exactness for the Rumin

differential. Since π̂−1(U) is simply connected, it holds that π̂∗ω is
horizontally exact if and only if dcπ̂

∗ω = 0. Since πE0 π̂
∗ω = π̂∗πE0ω as

πE0 is the horizontal projection for 1-forms, it follows that dcπ̂
∗ω = 0

is equivalent to dπEπ̂
∗πE0ω = 0.
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Consider the functions

cj := ⟨dcω, ρ̂j⟩, 1 ≤ j ≤ m.

Using Lemma 7.1, we find that

(14) dπEπ̂
∗πE0ω = π̂∗

(
dπEπE0ω −

m∑
j=1

cj ρ̂
j

)
+

m∑
j=1

π̂∗dcj ∧ πE⊥
0
θ̂j.

The collection πE⊥
0
θ̂1, . . . , πE⊥

0
θ̂k is linearly independent by the linear

independence of ρ̂1, . . . , ρ̂k. Combining this with the equality (14), we
deduce that dπEπ̂

∗πE0ω = 0 if and only if

(15) dπEπE0ω =
m∑
j=1

cj ρ̂
j for constants {cj}mj=1.

Applying πE0 to (15) leads to the equivalent equality

dcω =
m∑
j=1

cj ρ̂
j for constants {cj}mj=1.(16)

Hence π∗ω is horizontally exact if and only if (16) holds. Since the
R-linear spans of {ρ̂1, . . . , ρ̂m} and {πE0ρ

1, . . . , πE0ρ
m} are equal, the

claim follows. □

Proof of Theorem 1.1. By Proposition 5.5, the smooth contact map
f : U1 → H2 admits a contact lift F : π−1(U1) → G2 if and only if
π∗f ∗α2 ∈ Ω1(π−1(U1);V2) is horizontally exact.
Let v1, . . . , vm be a basis of V1. Consider the decomposition ρ1 =∑m
j=1 vjρ

j
1 of the 2-cocycle ρ1 ∈ Ω2(H1;V1). By applying Lemma 7.2

to π∗f ∗α2, we find that a contact lift exists if and only if dcf
∗α2 =∑m

j=1 cjπE0ρ
j
1 for some constant vectors cj ∈ V2, 1 ≤ j ≤ m. Therefore

L : V1 → V2, L(vj) = cj, for j = 1, . . . ,m,

defines a linear map for which L ◦ πE0ρ1 = dcf
∗α2. The converse is

immediate as well. □

8. Lifts and Lie algebra cohomology

In this section, we prove Theorems 1.2 and 1.4. First, we compare
the Pansu derivatives of a smooth contact map and its lift.

Lemma 8.1. Let V1 → G1 → H1 and V2 → G2 → H2 be central
extensions of Carnot groups, and let U1 ⊂ H1 be a domain. Let
F : π−1

1 (U1) → G2 be a smooth contact lift of a smooth contact map
f : U1 → H2. Then there exists a graded linear map φ : V1 → V2 such
that, for every h ∈ U1, there exists a graded Lie group homomorphism
ψh : G1 → G2 for which the following diagram commutes:
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V1 G1 H1

V2 G2 H2

φ ψh dP f(h)

Proof. Consider first the case where rank(G2) = rank(H2). In this case,
we may apply Lemma 6.5, and obtain a homomorphism Φ: V1 → V2
such that F (gk) = F (g)Φ(k) for all g ∈ π−1

1 (U1) and k ∈ V1.
Let g ∈ π−1

1 (U1). Computing the Pansu derivative in a direction
h ∈ V1, we obtain

dPF (g)h = lim
λ→0+

δ1/λ

(
F (g)−1F (gδλh)

)
= lim

λ→0+
δ1/λ

(
F (g)−1F (g)Φ(δλh)

)
= lim

λ→0+
δ1/λ

(
Φ(δλh)

)
=: φh.

Since the projections π1 and π2 are homomorphisms, we have π2 ◦
dPF (g) = dPf(π1g) ◦ π1. This gives us the commutative diagram

V1 G1 H1

V2 G2 H2

φ

π1

dPF (g) dP f(π1g)

π2

Since φ is a graded linear map independent of the point g, the claim is
proved in the equal rank case.

If instead rank(G2) > rank(H2), then, as in Lemma 4.1, we may
decompose G2 as a direct product of Carnot groups G2 ≃ G̃2×W2, with
W2 ⊂ V2 and rank(G̃2) = rank(H2), and consider the reduced central
extension V2/W2 → G̃2 → H2 and reduced lift F̃ = π ◦ F : π−1

1 (U1) →
G̃2, where π : G2 → G̃2 is the quotient projection.
By construction rank(G̃2) = rank(H2), so we may apply the previous

argument to the reduced lift F̃ . We obtain the commutative diagram

V1 G1 H1

V2/W2 G̃2 H2

V2 G2 H2

φ̃ dP F̃ (g) dP f(π1g)

id

The composition of φ̃ : V1 → V2/W2 and the inclusion V2/W2 → V2
gives the required graded linear map φ. □
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Proof of Theorem 1.2. By Lemma 8.1, there exists a graded linear map
φ : V1 → V2 and a family of graded homorphisms {ψh}h∈U1 with the
commutative diagram

V1 G1 H1

V2 G2 H2

φ ψh dP f(h)

By Lemma 3.5, such a diagram implies that the corresponding Lie
algebra homomorphisms satisfy

(17) φ ◦ ρ1 − dPf(h)
∗ρ2 = d0µh

for some linear map µh : h1 → V2.
Defining ω ∈ Ω1(H1;V2) by ω = d−1

0 (φ ◦ ρ1− f ∗
Pρ2), the identity (17)

may be restated as

φ ◦ ρ1 − f ∗
Pρ2 = d0ω,

thereby proving the claim. □

Theorem 1.2 and the following lemma allow us to reduce the exis-
tence of smooth contact lifts to a simpler situation.

Lemma 8.2. Let V1 → G1 → H1 and V2 → G2 → H2 be central
extensions of Carnot groups by 2-cocycles ρ1 and ρ2, respectively, and
let f : H1 ⊃ U1 → H2 be a smooth contact map, where U1 is an open
set. Suppose that φ : V1 → V2 is a graded linear map. Consider the
central extension of Carnot groups im(φ) → Ĝ1 → H1 by ρ̂1 = φ ◦ ρ1
and the graded homomorphism ψ : G1 → Ĝ1 from Lemma 3.8. Then,
if f admits a smooth contact lift F̂ : Ĝ1 ⊃ π̂−1

1 (U1) → G2, the map

F = F̂ ◦ ψ|π−1
1 (U1)

is a smooth contact lift of f .

The proof is direct from the definitions. We are ready to prove
Theorem 1.4.

Proof of Theorem 1.4. By assumption, f ∗
Pρ2 = φ ◦ ρ1 + d0ω for some

ω ∈ Ω1(U1;V2) and some graded linear map φ : V1 → V2. By apply-
ing Lemma 8.2, we may assume that V1 ⊂ V2 and φ is the inclusion
map. We suppress the notation for the inclusion map in the subsequent
argument.

We claim that it suffices to prove that

(18) dcf
∗
Pα2 = πE0πEf

∗
Pρ2

for a potential α2 of ρ2.
We reduce to Theorem 1.1 from (18) by claiming dcf

∗α2 = πE0ρ1.
First, observe that the left-hand side of (18) can be replaced by dcf

∗α2

because the horizontal components of f ∗
Pα2 and f ∗α2 coincide.



LIFTS TO CENTRAL EXTENSIONS 28

We recall that ρ1 = πE0ρ1 + d0µ for a left-invariant µ ∈ ker(d0)
⊥.

We may also assume that ω ∈ ker(d0)
⊥. We denote ω̃ = µ + ω. We

observe that in the identity

f ∗
Pρ2 = πE0ρ1 + d0ω̃,

there cannot be any cancellation on the right-hand side, since E0 ⊂
(im d0)

⊥. By assumption, the weight of f ∗
Pρ2 is at least max{wt(τ) :

0 ̸= τ ∈ E2
0}, so the same must be true for d0ω̃.

On the other hand, we have πEω̃ = 0 since πE = I − Pd−1
0 d for 1-

forms and P is a left-inverse of d−1
0 d|im(d−1

0 ) by [Rum99, Lemma]. Thus

πEdω̃ = dπEω̃ = 0. We may then rewrite

πE0πEd0ω̃ = −πE0πE(d− d0)ω̃.

By the assumption that ω̃ ∈ (ker d0)
⊥, the weights of ω̃ and d0ω̃

are equal, and thus the weight of (d − d0)ω̃ is strictly larger than
max{wt(τ) : 0 ̸= τ ∈ E2

0}. Since πE0πE does not decrease weights,
we find that πE0πEd0ω = 0. We obtain

(19) πE0πEf
∗
Pρ2 = πE0ρ1,

showing that once we prove (18), we may apply Theorem 1.1 and (19)
to conclude the proof.

For each ε ∈ (0, 1], let U1,ε = {g ∈ U1 : d(g,H1 \ U1) > ε}. To prove
(18), we apply the center of mass mollification fε : U1,ε → H2 from
[KMX20] to f . The approximation theorem [KMX20, Theorem 1.3]
implies that

(20) f ∗
ε τ ∧ ν → f ∗

P τ ∧ ν in L1(Ωn(U1))

whenever τ ∈ Ωk(H2) and ν ∈ Ωn−k
c (U1) satisfy

wt(τ) + wt(ν) ≥ QH1 .

Fix a compactly supported form η ∈ En−2
0 (U1). To prove (18), it

suffices to prove that

(21)

∫
U1

dcf
∗
Pα2 ∧ η =

∫
U1

πE0πEf
∗
Pρ2 ∧ η.

Observe that, for πEη ∈ En−2, since E ⊂ ker(d−1
0 ) and d0 is the zero

map on codimension one forms, we have πE0∂πEη = ∂πEη. Expanding
out the Rumin differential dc = πE0dπEπE0 , this implies that ∂cη =
∂πEη. Let ε > 0 be small enough that the support of η is contained in
U1,ε. Then we have

(22)

∫
U1,ε

f ∗
εα2 ∧ ∂cη =

∫
U1,ε

f ∗
ε ρ2 ∧ πEη.

This implies that an analogue of (21) holds for the mollification pull-
back f ∗

ε . We claim that the weight assumption on ρ2 allows us to apply
the approximation result (20) to take the limit as ε → 0 and obtain
(21).
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For the left-hand side, we do not need the weight assumption. In-
deed, since any horizontal 1-form has weight 1, all forms in E1

0 have
weight 1; by duality all forms in En−1

0 have weight QH1 − 1. Hence

lim
ε→0

∫
U1,ε

f ∗
εα2 ∧ ∂cη =

∫
U1

f ∗
Pα2 ∧ ∂cη =

∫
U1

dcf
∗
Pα2 ∧ η.

For the right-hand side, we use the weight assumption that wt(ρ2) ≥
max{wt(τ) : 0 ̸= τ ∈ E2

0}. By duality, for η ∈ En−2
0 , we have

wt(η) ≥ QH1 − wt(ρ2). Since πE : E0 → E does not decrease weights,
we conclude that

lim
ε→0

∫
U1,ε

f ∗
ε ρ2 ∧ πEη =

∫
U1

f ∗
Pρ2 ∧ πEη =

∫
U1

πE0πEf
∗
Pρ2 ∧ η.

Thus taking the limit of (22) as ε→ 0 proves (21). □

9. Lifts in Lipschitz 1-connected spaces

In this section, we prove Theorem 1.3. We begin by formulating a
version of Stokes’ theorem for the Pansu pullback.

Lemma 9.1. Let H be a Carnot group and let α, ω ∈ Ω1(H;V ). If
u : D → H is Lipschitz with boundary trace γ : S1 → H, then∫

D
u∗P (dα + d0ω) =

∫
γ

α.(23)

Proof. We have that u∗P (dα + d0ω) = u∗(dα) almost everywhere. In-
deed, u∗P (dα) = u∗(dα) follows from the fact that, in this case, the left-
trivialized differential of u coincides with the Pansu differential when-
ever the Pansu differential exists. The equality u∗P (dα) = u∗P (dα+d0ω)
follows from the fact that d0 commutes with the Pansu pullback, and
the fact that d0 is the zero map in the Euclidean space.

With these observations, Stokes’ equation implies∫
γ

α =

∫
D
u∗(dα).

To see this, we may reduce the claim to exponential coordinates by
recalling that logH ◦u has a Lipschitz extension to an open neighbour-
hood of D. Then the claimed equality follows, e.g., by considering D as
an integral current [D] with oriented boundary [S1] and using standard
pushforward results for Lipschitz maps, see [Fed69, 4.1.14] or [AK00a,
Section 2]. So (23) follows. □

Proof of Theorem 1.3. By assumption f ∗
Pρ2 = φ ◦ ρ1 + d0ω for some

ω ∈ Ω1(U1;V2) and some graded linear map φ : V1 → V2. By apply-
ing Lemma 8.2, we may assume that V1 ⊂ V2 and φ is the inclusion
map. We suppress the notation for the inclusion map in the subsequent
argument.
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Let h ∈ U1 and r > 0 be such that the open ball B(h, 3λr
2
) is con-

tained in U1. Since such balls cover the simply connected open domain
U1, by Lemma 6.3, it suffices to show that there exists a smooth contact
lift F : π−1

1 (B(h, r)) → G2 of f . Furthermore, by Lemma 6.2, it suffices
to show that there exists a smooth contact lift F : Ũ1 → G2, for any
smaller open subset Ũ1 ⊂ π−1

1 (B(h, r)) such that π1(Ũ1) = B(h, r).
Fix a basepoint g ∈ π−1

1 (h) and let Ũ1 = B(g, r) ⊂ G1 be the open
ball. We will apply Lemma 5.3 to prove the existence of a lift, so let
γ ∈ ΓLIP(g, Ũ1) be an arbitrary closed horizontal curve. We write γ as
a concatenation γ = σ1 ⋆ · · ·⋆σm, where each σj : [0, 1] → Ũ1 has length

ℓ(σj) ≤ r. We form a new closed horizontal curve γj : [0, 1] → Ũ1 by
first joining g to σj(0) and σj(1) to g by a curve of length ≤ r and
concatenating these curves with σj to form γj. We lose no generality
in assuming that the curve joining σj(1) to g and the curve joining g
to σj+1(0) are inversions of one another. We prove that∫

f◦π1◦γ
α2 =

m∑
j=1

∫
f◦π1◦γj

α2 =
m∑
j=1

∫
π1◦γj

α1 =

∫
π1◦γ

α1

for potentials α1 and α2 of ρ1 and ρ2, respectively. Observe that this
suffices for the claim. Indeed, since γ ∈ ΓLIP(g, Ũ1), we have

∫
π1◦γ α1 =

0, implying that condition (6) holds. Then Lemma 5.3 implies that a
smooth contact lift of f exists.

To finish, without loss of generality γ = γj and ℓ(γ) ≤ 3r. We may

reparametrize it as a 3r
4
-Lipschitz curve γ : S1 → Ũ1. By the Lipschitz

1-connected assumption, there exists a 3λr
4
-Lipschitz map u : D → H1,

with boundary trace π1 ◦ γ, satisfying
u(D) ⊂ B(h, 3λr

2
) ⊂ U1.

By assumption, f ∗
Pρ2 = ρ1 + d0ω. From the chain rule, we obtain that

(f ◦ u)∗Pρ2 = u∗P (f
∗
Pρ2) = u∗P (ρ1 + d0ω)

almost everywhere. Lemma 9.1, therefore, implies that∫
f◦π1◦γ

α2 =

∫
D
(f ◦ u)∗Pρ2 =

∫
D
u∗P (ρ1 + d0ω) =

∫
π1◦γ

α1.

The proof is complete. □

10. Examples

In Examples 10.1, 10.2, and 10.4, we discuss connections between
existing literature on contact lifts and our main results. Example 10.3
shows a simple application of our main results. Examples 10.5 and
10.6 are concrete examples of the lifting problem. Lastly, Remark 10.7
reformulates the contact equations in terms of differential forms.

The following example shows that the lifting problem of horizontal
curves can be understood as a special case of our main results.
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Example 10.1. Consider Carnot groups G and H with rank(G) =
rank(H), together with a graded homomorphism π : G→ H for which
π∗ is a submetry. The existence of lifts of horizontal curves γ : [0, 1] →
H to horizontal curves γ̃ : [0, 1] → G, with π◦ γ̃ = γ, can also be viewed
as an application of Theorem 1.1.

Indeed, decomposing the ideal kerπ as ker π = V [2] ⊕ · · · ⊕ V [s]

with V [k] ⊂ g[k], we may consider G as an iterated central exten-
sion of Carnot groups G = Gs → Gs−1 → · · · → G1 = H with
ker(Gk → Gk−1) ≃ V [k]. Since dc = 0 for 1-forms on R, the crite-
rion of Theorem 1.1 trivially holds for each central extension in the
sequence, and we obtain the existence of lifts of horizontal curves.

We next discuss the Lagrangian–Legendrian correspondence.

Example 10.2. Let ρ ∈
∧2(R2n)∗ be the standard symplectic form

ρ =
∑n

i=1 dxi ∧ dyi for z = (x, y) ∈ R2n. The central extension R →
G → R2n by ρ is isomorphic to the n’th Heisenberg group Hn. In
Allcock’s proof of the isoperimetric inequality in Hn, for n ≥ 2, Allcock
lifted isotropic maps f : R2 ⊃ D → R2n to contact maps F : D → Hn via
a lifting construction similar to Section 5. Here, the isotropic condition
is f ∗

Pρ = 0. It is also called the Lagrangian condition (see e.g. [SW01]).
Since the Lie algebra differential d0 is zero in Euclidean spaces, the
Lagrangian condition is necessary for the existence of a lift F as above,
recall Theorem 1.2. The fact that it is sufficient follows either from
Theorem 1.3 or Theorem 1.4. We also note that Magnani extended
Allcock’s construction to the Allcock groups in [Mag10, Theorem 1.3].

If the cocycle defining the central extension on the image side has
large enough weight, the lift condition holds automatically.

Example 10.3. Consider a central extension of Carnot groups V2 →
G2 → H2 by ρ2 with wt(ρ2) ≥ s + 2 and a step s-Carnot group H1.
We claim that if f : H1 ⊃ U1 → H2 is a smooth contact map on a
simply connected domain U1, then there exists a smooth contact lift
F : U1 → G2 of f . We show this as a simple application of Theorem 1.4.
We first observe that ker(d0 : Ω

2(U1) → Ω3(U1)) (resp. E
2
0(U1)) has

a left-invariant basis of pure weight elements whose maximal weight
is at most s + 1. To this end, given a 2-cocycle ρ, the cocycle con-

dition ρ ∈ ker(d0) implies that if i + j ≥ s + 2, then ρ(h
[i]
1 , h

[j]
1 ) ⊂

span ρ(h
[i−1]
1 , h

[j+1]
1 ). Recursion leads to the conclusion ρ(h

[i]
1 , h

[j]
1 ) ⊂

span ρ(h
[1]
1 , h

[j+i−1]
1 ) = {0}. The first observation follows. To finish, it

holds that f ∗
Pρ2 = 0 because d0 commutes with the Pansu pullback and

the weight of f ∗
Pρ2 is at least s + 2. Consequently, the assumptions of

Theorem 1.4 apply for the trivial extension {0} → H1 → H1. Thus
there exists a smooth contact lift F : U1 → G2 of f .

For the following examples, we specialize the discussion to the first
Heisenberg group H1 and the higher filiform groups. We recall that
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these groups are not Lipschitz 1-connected (see e.g. [WY14]) and thus
Theorem 1.3 is not applicable.

Example 10.4. Consider the real filiform Carnot group F s of step s.
The corresponding Lie algebra is given by

fs = span(X, Y )⊕ span(Z2)⊕ · · · ⊕ span(Zs),

where [X, Y ] = Z2 and [X,Zk] = Zk+1 are the only non-trivial relations.
Consider the corresponding dual basis X∗, Y ∗, Z∗

2 , . . . , Z
∗
s .

Observe that R → F s+1 πs→ F s is a central extension of Carnot groups
by the cocycle ρs = X∗ ∧ Z∗

s . Here F 1 is isomorphic to R2 and F 2 is

isomorphic to the first Heisenberg group H1. In fact, R → F 2 π1→ R2 is
a central extension of Carnot groups by the volume form dx ∧ dy.

Our results can be used to classify all smooth contact maps f : F s ⊃
U1 → F s, for simply connected U1, that lift to a smooth contact map
F : F s+1 ⊃ π−1

s (U1) → F s+1. Indeed, we claim that it is necessary and
sufficient that

(24) f ∗
Pρs = λρs for some λ ∈ R.

Note that the weight of ρs (and thus also f ∗
Pρs) is s + 1 while the

maximum weight in the image of d0 is s. Hence (24) is necessary (The-
orem 1.2) and sufficient (Theorem 1.4) for the existence of a contact
lift F .

When we identify R2 and F 1, the condition (24) is equivalent to
f having a constant Jacobian determinant, thereby relating to the
results of Capogna–Tang [CT95] and Balogh–Hoefer-Isenegger–Tyson
[BHIT06].
The higher step case has also been considered previously. Indeed,

comparing (24) to [Xie15, Theorem 1.1] (see also Warhust [War03])
leads to the following: if s ≥ 3 and f : F s → F s is bi-Lipschitz (and
smooth), it is an iterated lift of a (smooth) bi-Lipschitz map R2 → R2.
By the constructions of Korányi–Reimann [KR85, KR95], the assump-
tion s ≥ 3 is necessary.

As an example related to Example 10.4, we consider a contact lift
of a planar map to the first Heisenberg group that does not lift to the
higher filiform groups.

Example 10.5. We consider the standard winding map f : U → U
(of degree k ≥ 2) for U = R2 \ {0}. Recall that, in polar coordi-
nates, the winding map satisfies (r, t) 7→ (r, kt). More precisely, let
p : (0,∞) × R → U and q : (0,∞) × R → (0,∞) × R be the maps
(r, t) 7→ (r cos(t), r sin(t)) and (r, t) 7→ (r, kt), respectively. Then
f ◦ p = p ◦ q.
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The map f can be presented locally as the composition p ◦ q ◦ p−1 of
smooth maps and is thus smooth. Further, since

det(Dp)(r,t) = det

(
cos(t) −r sin(t)
sin(t) r cos(t)

)
= r

and det(Dq)(r,t) = k for r > 0 and t ∈ R, it follows that det(Df) ≡ k
in U .

As the first Heisenberg group is a central extension of R2 by the
volume form dx∧dy, the determinant being constant implies that there
exists a lift, at least locally. In fact, we may define F : π−1

1 (U) → H1 as
F (x, y, z) = (f(x, y), kz) in exponential coordinates. Below we justify
the contact property of F and that F does not lift to a contact map
from the filiform group F 3 into itself, cf. Example 10.4.
In exponential coordinates, a standard left-invariant frame is given

by

X = ∂x −
y

2
∂z, Y = ∂y +

x

2
∂z, and Z2 = ∂z,

where the dual frame is

X∗ = dx, Y ∗ = dy, and Z∗
2 = dz − 1

2
(xdy − ydx).

In cylindrical coordinates (r, t, z), we have

X∗ = cos(t)dr − r sin(t)dt,

Y ∗ = sin(t)dr + r cos(t)dt, and

Z∗
2 = dz − 1

2
r2dt.

A direct computation shows that F ∗Z∗
2 = kZ∗

2 , so F is contact as
claimed.

The left-trivialized differential of F is of block diagonal form by the
contact equations and the fact that F ∗X∗(Z2) = 0 = F ∗Y ∗(Z2). Then,
if g = (x, y, z) in exponential coordinates, it holds that

(DPF )(x,y,z)(a, b) = (DPf)(x,y)(a) + kb, for (a, b) ∈ R2 ⊕ R,

where we identify R2 as a subspace of R3 = R2 ⊕R through the linear
map a1∂1 + a2∂2 7→ a1X + a2Y + 0 · Z2 for a = (a1, a2). Therefore the
equalities

F ∗
PZ

∗
2 = F ∗Z∗

2 = kZ∗
2 ,

and

F ∗
Pρ2 = (F ∗

PX
∗) ∧ (F ∗

PZ
∗
2) = (cos(kt)dr − r sin(kt)kdt) ∧ kZ∗

2

= k cos(kt)dr ∧ dz − 1

2
r2 cos(kt)kdr ∧ dt− r sin(kt)k2dt ∧ dz
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hold. In contrast,

ρ2 = cos(t)dr ∧ dz − 1

2
r2 cos(t)dr ∧ dt− r sin(t)dt ∧ dz.

By comparing the coefficients of F ∗
Pρ2 and ρ2, it follows that no point

x0 ∈ U has an open neighbourhoodW and λ ∈ R such that F ∗
Pρ2 = λρ2

in W . This implies that F does not admit a contact lift to F 3, even
locally.

We next give an example of a contact lift from a non-simply con-
nected domain that does not extend to the full cylinder.

Example 10.6. For non-simply connected domains U , the argument of
Lemma 6.2 to extend a lift to the entire cylinder π−1(U) cannot always
work. For instance, on the annulus A = B(0, 2) \ D̄ ⊂ R2, consider the
map f : A → R2, f(x) = x/|x|, and the Heisenberg group H1. As in

Example 10.4, recall that we have a central extension R → H1
π1→ R2.

In exponential coordinates, the horizontal lift of the curve t 7→
(r cos(t), r sin(t)) to H1 is the spiral t 7→ (r cos(t), r sin(t), 1

2
r2t) for

r > 0. The spirals above and their vertical translations foliate a do-
main Ũ . More precisely, identify H1 with R3 through exponential co-
ordinates. Then Ũ is the image of the diffeomorphism

Ψ: (1, 2)× R×
(
−π
2
,
π

2

)
→ Ũ ,

where (r, t, s) 7→ (r cos t, r sin t, 1
2
r2t+ s). By construction, π1(Ũ) = A.

Consider the map

(25) F : Ũ → H1, F ◦Ψ(r, t, s) = (cos t, sin t,
1

2
t).

It holds that π1 ◦ F = f ◦ π1|Ũ and that F is smooth. Using the
notation from Example 10.5 and the formula for F ◦Ψ, we obtain that
Ψ∗(F ∗Z∗

2) = (F ◦ Ψ)∗Z∗
2 = 0. As Ψ is a diffeomorphism, this implies

that F ∗Z∗
2 = 0 and thus F is a smooth contact lift of f .

If F would extend to a contact lift of f on π−1
1 (A), by Lemma 6.5,

there would exist k ∈ R such that F (x, y, z+a) = F (x, y, z)+k(0, 0, a)
whenever (x, y, z + a), (x, y, z) ∈ Ũ . Such a k does not exist. Indeed,
if r ∈ (1, 2), evaluating F at (r, 0, 0) and (r, 0, s) for 0 ̸= s ∈

(
−π

2
, π
2

)
leads to k = 0. Evaluating F at (r, 0, 0) and (r, 0, πr2) leads to a
contradiction with k = 0. Thus F does not admit such an extension.

As a final remark, we prove how our methods can be used to rewrite
the contact equations for a contact map.

Remark 10.7. The potential α2 of the central extension 2-cocycle ρ2
appearing in Theorem 1.1 and our other results is directly related to
the contact equation. Consider a smooth map f : H ⊃ U → G between
Carnot groups, and consider G = Gs as an iterated central extension
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of Carnot groups g[k+1 → Gk+1] → Gk by ρk+1, starting from the
abelianization G1 = G/[G,G] ≃ Rr.
For each k = 2, . . . , s, consider exponential coordinates Gk → g[1] ⊕

· · · ⊕ g[k] and let xk : Gk → g[k] be the degree k-component of the
coordinate map. Then, for the cocycle ρk ∈ Ω2(Gk−1; g

[k]), we may
consider the potential αk ∈ Ω1(Gk−1; g

[k]) as in Lemma 5.1. That
is, dxk = θk + π∗

kαk, where θk is the left-invariant extension of the
projection g[1]⊕ · · ·⊕ g[k] → g[k], and πk : Gk → Gk−1 is the projection.

Denote by τk : G → Gk the projection map to the quotient Gk for
k = 1, . . . , s. Then τk ◦ f : U → Gk is a lift of τk−1 ◦ f : U → Gk−1 for
k = 2, . . . , s. Computing as in the proof of Proposition 5.5, we see that

d(xk ◦ τk ◦ f) = (τk ◦ f)∗θk + (τk−1 ◦ f)∗αk.

If f is contact, so is each τk ◦ f . Then, for a horizontal vector Y ,
we have (τk ◦ f)∗θk(Y ) = 0 for k = 2, . . . , s. That is, if we denote
x̃k = xk ◦ τk : G→ g[k] and α̃k = τ ∗k−1αk ∈ Ω1(G; g[k]), then

(26) d(x̃k ◦ f)(Y ) = f ∗α̃k(Y ), for every k = 2, . . . , s and Y ∈ g[1].

Conversely, if (26) holds for every horizontal vector Y , then

(τk ◦ f)∗θk(Y ) = 0, for every k = 2, . . . , s and Y ∈ g[1].

This precisely means that f maps horizontal vectors to horizontal vec-
tors, i.e., f is contact. Thus (26) is a form of the contact equations.
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