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Abstract. We give a short solution to one of the main open problems in subrie-
mannian geometry. Namely, we prove that length minimizers do not have corner-
type singularities. With this result we solve Problem II of Agrachev’s list, and
provide the first general result toward the 30-year-old open problem of regularity of
subriemannian geodesics.
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1. Introduction

One of the major open problems in subriemannian geometry is the regularity of
length-minimizing curves (see [Mon02, Section 10.1] and [Mon14b, Section 4]). This
problem has been open since the work of Strichartz [Str86, Str89] and Hamenstädt
[Ham90].

Contrary to Riemannian geometry, where it is well known that all length minimizers
are C∞-smooth, the problem in the subriemannian case is significantly more difficult.
The primary reason for this difficulty is the existence of abnormal curves (see [AS04,
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ABB15]), which we know may be length minimizers since the work of Montgomery
[Mon94]. Nowadays, many more abnormal length minimizers are known [BH93, LS94,
LS95, GK95, Sus96].

Abnormal curves, when parametrized by arc-length, need only have Lipschitz-
regularity (see [LDLMV14, Section 5]), which is why, a priori, no further regular-
ity can be assumed from an arbitrary length minimizer in a subriemannian space.
However, a recent result of Sussmann states that in the analytic setting, every length
minimizer is analytic on an open dense subset of its domain, see [Sus14]. Nonetheless,
even including all known abnormal minimizers, no example of a non-smooth length
minimizer has yet been shown.

A considerable effort has been made to find examples of non-smooth minimizers
(or to prove the non-existence thereof) in the simple case of curves where the lack of
continuity of the derivative is at a single point. Partial results for the non-minimality
of corners can be found, e.g., in [Mon14a, Mon14c, LDLMV13].

In this paper, we prove the non-minimality of curves with a corner-type singularity
in complete generality. Thus we solve Problem II of Agrachev’s list of open problems
in subriemannian geometry [Agr14], by proving the following result (definitions are
recalled in Section 1.2):

Theorem 1.1. Length-minimizing curves in subriemannian manifolds do not have
corner-type singularities.

In fact, our proof also shows that the same result holds even if instead of subrieman-
nian manifolds, we consider the slightly more general setting of Carnot-Carathéodory
spaces with strictly convex norms.

1.1. The idea of the argument. The argument builds on ideas of the two papers
[LM08, LDLMV15]. Up to a desingularization, blow-up, and reduction argument, it
is sufficient to consider the case of a corner in a Carnot group of rank 2. For Carnot
groups, we prove the result (Theorem 3.1) by induction on the step s of the group,
starting with s = 2, i.e., the Heisenberg group, see Lemma 2.1.

For an arbitrary step s ≥ 3 we project the corner into a Carnot group of step s−1.
The inductive argument then gives us the existence of a shorter curve in the group of
step s− 1. Lifting this curve back to the original group, we get a curve shorter than
the initial corner, but with an error in the endpoint by an element of degree s, see
Lemma 2.2.

We correct the error by a system of curves placed along the corner. In fact, we prove
that this is possible with a system of three curves with endpoints in the subspace of
degree s − 1. This last fact is the core of the argument (see Lemma 2.3) and is a
crucial consequence of the fact that the space is a nilpotent and stratified group.

Finally, we consider the situation at smaller scales by modifying the initial corner
using an ε-dilation of the lifted curve and suitable dilations of the three correcting
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curves. By Lemma 2.3 the suitable factor to correct the error of the dilated corner-
cut is εs/(s−1), essentially due to the fact that the error scales with order s and the
correction scales with order s − 1. Hence, the length of the new curve is the length
of the corner plus a term of the form

−aε+ bεs/(s−1),

for some positive constants a, b. We conclude that for ε small enough the new curve
is shorter than the corner.

1.2. Definitions. Let M be a smooth Riemannian manifold and ∆ a smooth subbun-
dle of the tangent bundle. We consider the length functional L∆ on curves in M that
for a curve γ is defined as the Riemannian length of γ if γ̇ ∈ ∆ almost everywhere,
and ∞ otherwise. Analogously to the Riemannian setting, let d∆ be the distance
associated to L∆. We assume that ∆ is bracket generating, in which case d∆ is fi-
nite and its length functional is L∆. In this paper, we call (M,d∆) a subriemannian
manifold. For more on the subject see [Gro96, Gro99, Mon02, Jea14, Rif14, ABB15].
If instead of a Riemannian structure, we use a continuously varying norm on the
tangent bundle, we call the resulting metric space a Carnot-Carathéodory space (C-C
space, for short).

Let γ : [−1, 1] → M be an absolutely continuous curve on a manifold M . We say
that γ has a corner-type singularity at time 0, if the left and right derivatives at 0
exist and are linearly independent.

Let G be a Lie group. We say that a curve γ : [−1, 1]→ G is a corner if there exist
linearly independent vectors X1, X2 in the Lie algebra of G such that

γ(t) =

{
exp(−tX1) if t ∈ [−1, 0]

exp(tX2) if t ∈ (0, 1] .

In such a case, we will say that γ is the corner from exp(X1) to exp(X2). Notice that
at 0 the left derivative of γ is −X1, while the right derivative is X2. Hence, a corner
has a corner-type singularity at 0.

Let G be a simply connected Lie group with a Lie algebra g admitting a stratifica-
tion, i.e., g = V1⊕ · · ·⊕Vs, where Vj ⊂ g are disjoint vector subspaces of the algebra,
such that Vj+1 = [V1, Vj] for all j = 1, . . . , s with Vs+1 = {0}. The subspaces Vj are
called the layers of the stratification. Let |·| be a norm on the first layer V1 of the Lie
algebra. The Lie group G together with a stratification g = V1⊕· · ·⊕Vs of its algebra
and a norm |·| on the first layer V1 is called a Carnot group. See [Mon02, LD15] for
more discussion on Carnot groups.

A Carnot group has a natural structure of C-C space where the subbundle ∆ is
the left-translation of the first layer V1 and the norm is extended left-invariantly.
Then by construction the C-C distance d = d∆ on a Carnot group is left-invariant.
In addition, a Carnot group also has a family of Lie group automorphisms {δε}ε>0
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adapted to the stratification. Namely, each δε is determined by (δε)∗(X) = εjX, for
X ∈ Vj. Moreover, each map δε behaves as an ε-dilation for the C-C distance, i.e.,
d(δε(g), δε(h)) = εd(g, h), for all points g, h ∈ G.

In a Carnot group, the curves t 7→ exp(tX), with X ∈ g, have locally finite length if
and only if X ∈ V1. Actually, such curves are length minimizing and d(e, exp(X)) =
|X|, where e denotes the identity element of G.

A norm |·| is strictly convex if in its unit sphere there are no non-trivial segments.
Equivalently, if |x| = |y| = 1 and |x+ y| = 2, strict convexity implies x = y.

2. Preliminary lemmas

The following lemma is the base of our inductive argument. In particular, it proves
Theorem 1.1 for the Heisenberg group equipped with a strictly convex norm.

Lemma 2.1. Let G be a step-2 Carnot group with a distance d associated to a strictly
convex norm. Then in (G, d) no corner is length minimizing.

Proof. Let X1 and X2 be linearly independent vectors of the first layer V1 of G. For
ε > 0, consider the group elements

g1 = exp((ε− 1)X1), g2 = exp(ε(X2 −X1)), g3 = exp((1
2
− ε)X2),

g4 = exp(−ε2X1), g5 = exp(1
2
X2), g6 = exp(ε2X1).

Using the Baker-Campbell-Hausdorff Formula, which in step 2 is exp(X) exp(Y ) =
exp(X + Y + 1

2
[X, Y ]), one can verify that exp(X2) = exp(X1) g1 · · · g6. We may

assume that |X1| = |X2| = 1. Since X1 and X2 are linearly independent and the
norm is strictly convex, the distance

D = d(e, exp(X2 −X1)) = |X2 −X1|

is strictly smaller than 2. By left-invariance of the distance and the triangle inequality,
we get the upper bound

d(exp(X1), exp(X2)) = d(e, g1 · · · g6) ≤
6∑
j=1

d(e, gj),

which we can explicitly calculate as

6∑
j=1

d(e, gj) = (1− ε) + εD + (1
2
− ε) + ε2 + 1

2
+ ε2

= 2− (2−D)ε+ 2ε2.

Since −(2−D) < 0, taking small enough ε > 0 we deduce d(exp(X1), exp(X2)) < 2.
Hence the corner from exp(X1) to exp(X2) is not length minimizing in G. �
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The geometric interpretation of the next lemma is the following. Curves from a
quotient group can be isometrically lifted. Thus in our inductive argument we can
use a geodesic from the previous step to get a curve that is shorter than the corner
and has an error only in the last layer.

Lemma 2.2. Let G be a Carnot group of step s. Assume that there are no minimizing
corners in any Carnot group of step s− 1 with first layer isometric to the first layer
of G. For all linearly independent X1, X2 ∈ V1 there exists h ∈ exp(Vs) such that

d(h exp(X1), exp(X2)) < |X1|+ |X2|.

Proof. Consider the closed central subgroup H = exp(Vs). The quotient G/H is a
Carnot group of step s − 1 with first layer π∗(V1). Note that the norm on π∗(V1) is
exactly the one that makes the projection π∗ : V1 → π∗(V1) an isometry. Therefore the
first layer π∗(V1) of G/H is isometric to V1, so by assumption there are no minimizing
corners in G/H.

If X1 and X2 are linearly independent, then so are π∗(X1) and π∗(X2). Thus, by
assumption, the corner in G/H from exp(π∗(X1)) to exp(π∗(X2)) is not length mini-
mizing. Observe that since π is a Lie group homomorphism, we have exp(π∗(X)) =
π(exp(X)). Hence,

d(π(exp(X1)), π(exp(X2))) < |X1|+ |X2|.

Using left-invariance of the distance on G we see that

d(π(exp(X1)), π(exp(X2))) = d(H exp(X1), H exp(X2))

= inf
h∈H

d(h exp(X1), exp(X2)).

Combining the above equality with the previous inequality, we conclude that there
exists a point h ∈ H for which the statement of the lemma holds. �

The next lemma is the technical core of our argument. It shows that any error
coming from Lemma 2.2 can be corrected using vectors in the layer s − 1. It also
quantifies how the corrections change when scaling the error. In what follows, we
consider the conjugation map Cp(q) = pqp−1.

Lemma 2.3. Let G be a Carnot group of step s ≥ 3 and let X1 and X2 be vectors
spanning V1. Then for any h ∈ exp(Vs) there exist vectors Y1, Y2, Y3 ∈ Vs−1 such that

Cexp(X1) (exp(εsY1)) · Cexp( 1
2
X2) (exp(εsY2)) · Cexp(X2) (exp(εsY3)) = δε(h),

for all ε > 0.

Proof. Consider first for some Z ∈ Vs the equation

(2.4) Cexp(X1) (exp(Y1)) · Cexp( 1
2
X2) (exp(Y2)) · Cexp(X2) (exp(Y3)) = exp(Z)
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in the variables Y1, Y2, Y3 ∈ Vs−1. Since the step of the group G is s, each conjugation
can be expanded by the Baker-Campbell-Hausdorff Formula1 as

Cexp(X) (exp(Y )) = exp(X) exp(Y ) exp(−X) = exp(Y + [X, Y ]).

We remark that the subgroup exp(Vs−1 ⊕ Vs), containing the above conjugations, is
commutative because of the assumption s ≥ 3. Hence exp is a homomorphism on
Vs−1 ⊕ Vs. Consequently, since exp is also injective, we see that (2.4) is equivalent to
the linear equation

(2.5) Y1 + Y2 + Y3 + [X1, Y1] + [X2,
1
2
Y2 + Y3] = Z.

Since the vectors X1 and X2 span the first layer V1, and Vs = [V1, Vs−1], for any Z ∈ Vs
there exist W1,W2 ∈ Vs−1 such that

Z = [X1,W1] + [X2,W2].

Therefore, to solve the linear equation (2.5), it is sufficient to solve the linear system

Y1 + Y2 + Y3 = 0

Y1 = W1

1
2
Y2 + Y3 = W2,

which has the solution Y1 = W1, Y2 = −2W1 − 2W2, Y3 = W1 + 2W2. Hence for any
data Z ∈ Vs, equation (2.4) has a solution Y1, Y2, Y3 ∈ Vs−1.

Consider a fixed h ∈ exp(Vs) and let Z ∈ Vs be such that exp(Z) = h. Note that
then δε(h) = exp(εsZ) for any ε > 0. Recalling that the solution Y1, Y2, Y3 for the data
Z is given by a linear equation, we have that for any ε > 0 the vectors εsY1, ε

sY2, ε
sY3

give a solution for the data εsZ, resulting in the statement of the lemma. �

3. The main result

3.1. Reduction to Carnot groups. The proof of Theorem 1.1 can be reduced to
the corresponding result for Carnot groups. Due to the possibility of the manifold not
being equiregular (see [Jea14] for the definition), we first consider a desingularization
of the manifold near the corner-type singularity. Then we perform a blow-up, giving
a corner in the metric tangent, which is a Carnot group by Mitchell’s Theorem.

Let M be a subriemannian manifold with subbundle ∆, and let γ be a curve in M .
Fix a local orthonormal frame X1, . . . , Xr for ∆ near γ(0). By [Jea14, Lemma 2.5,
page 49] there exists an equiregular subriemannian manifold N with an orthonormal
frame ξ1, . . . , ξr and a map π : N → M onto a neighborhood of γ(0) such that

1Alternatively, one can use the formula [War83, page 114]

Cexp(X) (exp(Y )) = exp(Adexp(X) Y ) = exp(eadXY ).
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π∗ξi = Xi. We observe that π is 1-Lipschitz with respect to the subriemannian
distances.

Assume that γ is length minimizing, has a corner-type singularity at 0, and is
contained in π(N). Let uj be integrable functions such that γ̇ =

∑
j ujXj almost

everywhere.

Let σ be a curve in N such that σ̇ =
∑

j ujξj almost everywhere. Hence π ◦ σ = γ

and the two curves σ and γ have the same length, see the proof of [Jea14, Lemma 2.5,
page 49]. Since π does not stretch distances, we conclude that σ is length minimizing.

Since the vector fields Xj form a frame, the coefficients uj are uniquely determined
from γ̇, and the existence of the left and right derivatives at 0 is equivalent to 0
being a left and right Lebesgue point for uj. Therefore σ also admits2 left and right
derivatives at 0. Noting that π∗σ̇ = γ̇ and that γ has a corner-type singularity at 0,
we conclude that σ also has a corner-type singularity at 0.

The curve σ is now a length-minimizing curve with a corner-type singularity on an
equiregular subriemannian manifold N . The metric tangent of N is a Carnot group
G, see a detailed proof in [Jea14, Proposition 2.4, page 39]. The blow-up of σ on
the Carnot group G is length minimizing and is given by the concatenation of two
half-lines, see [LM08, Proposition 2.4].

3.2. The inductive non-minimality argument. By the previous argument, to
show that a length-minimizing curve in a subriemannian manifold cannot have a
corner-type singularity, it suffices to prove the corresponding result for Carnot groups.
In fact, we prove the slightly stronger statement:

Theorem 3.1. Corners are not length minimizing in any Carnot group equipped with
a Carnot-Carathéodory distance coming from a strictly convex norm.

In the above, the distance is only coming from a strictly convex norm, as opposed
to an inner product as in the subriemannian case. The argument at the beginning
of this section is however not dependent on the chosen distance. Thus it shows that
Theorem 1.1 also holds for C-C spaces with strictly convex norms.

Proof of Theorem 3.1. We remark that it suffices to consider the case of rank-2 Carnot
groups. Indeed, any corner is contained in some rank-2 subgroup, and if a curve is
length minimizing, it must also be length minimizing in any subgroup containing it.
The theorem will then be proven for rank-2 Carnot groups by induction on the step
s of the group. The base of induction is the case s = 2, where the result is verified
by Lemma 2.1.

2We remark that for rank-varying distributions, desingularizations of curves with corner-type
singularities need not have one-sided derivatives.
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Let G be a rank-2 Carnot group of step s with a Carnot-Carathéodory distance
coming from a strictly convex norm. Consider the corner from exp(X1) to exp(X2),
for some linearly independent X1, X2 ∈ V1 with |X1| = |X2| = 1.

Taking the quotient of G by the central subgroup exp(Vs), we get a Carnot group of
step s−1 whose first layer is isometric to the first layer of G. Note that the projection
of a corner is still a corner in the quotient, where by induction we assume that corners
are not length minimizing. Hence, by Lemma 2.2, there exists h ∈ exp(Vs) such that

(3.2) d(h exp(X1), exp(X2)) < 2.

By Lemma 2.3, for this fixed h ∈ exp(Vs), there exist vectors Y1, Y2, Y3 ∈ Vs−1 satis-
fying the equation

(3.3) δε(h)−1 Cexp(X1) (exp(εsY1)) · Cexp( 1
2
X2) (exp(εsY2)) · Cexp(X2) (exp(εsY3)) = e.

For a given ε > 0, consider the following points

g1 = exp(εsY1) = δεs/(s−1)(exp(Y1)),

g2 = exp(−(1− ε)X1) = δ1−ε(exp(−X1)),

g3 = exp(−εX1)δε(h)−1 exp(εX2) = δε
(
exp(−X1)h−1 exp(X2)

)
,

g4 = exp((1
2
− ε)X2) = δ1

2
−ε

(exp(X2)),

g5 = exp(εsY2) = δεs/(s−1)(exp(Y2)),

g6 = exp(1
2
X2) = δ1

2
(exp(X2)), and

g7 = exp(εsY3) = δεs/(s−1)(exp(Y3)).

We claim that

(3.4) exp(X2) = exp(X1) g1 · · · g7,

and that for small enough ε > 0

(3.5)
7∑
j=1

d(e, gj) < 2,

from which the result of the theorem will follow. Regarding (3.4), writing explicitly
the definitions of the points gj, we have

exp(X1) g1 · · · g7 = exp(X1) exp(εsY1) exp(−(1− ε)X1) exp(−εX1)δε(h)−1

· exp(εX2) exp((1
2
− ε)X2) exp(εsY2) exp(1

2
X2) exp(εsY3).

Then, using the fact that h is in Z(G), we rewrite the right-hand side in terms of
conjugations as

δε(h)−1 Cexp(X1) (exp(εsY1)) · Cexp( 1
2
X2) (exp(εsY2)) · Cexp(X2) (exp(εsY3)) exp(X2).
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Since Y1, Y2, Y3 were chosen to satisfy (3.3), the above term reduces to exp(X2), thus
showing (3.4). To show (3.5), we note that as the points gj are all dilations of some
fixed points, the individual distances are given by

d(e, g1) = εs/(s−1)d(e, exp(Y1)),

d(e, g2) = 1− ε
d(e, g3) = εd(e, exp(−X1)h−1 exp(X2)) = εd(h exp(X1), exp(X2)),

d(e, g4) =
1

2
− ε,

d(e, g5) = εs/(s−1)d(e, exp(Y2)),

d(e, g6) =
1

2
and

d(e, g7) = εs/(s−1)d(e, exp(Y3)).

Summing all the above distances, we get
7∑
j=1

d(e, gj) = 2− (2−D)ε+ o(ε), as ε→ 0,

where
D = d(h exp(X1), exp(X2)).

By the choice of h from (3.2), we have −(2 − D) < 0. Therefore, for small enough
ε > 0, we deduce (3.5).

We finally estimate using left-invariance, equations (3.4) and (3.5), and the triangle
inequality, that

d(exp(X1), exp(X2)) = d(e, g1 · · · g7) ≤
7∑
i=1

d(e, gi) < 2,

for small enough ε > 0. Since the considered corner from exp(X1) to exp(X2) has
length equal to 2, where X1 and X2 were arbitrary linearly independent unit-norm
vectors of the first layer V1, we conclude that corners in the group G of step s are not
length minimizing. �
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pp. 341–364.

[Sus14] H. J. Sussmann, A regularity theorem for minimizers of real-analytic subriemannian
metrics, Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, Dec
2014, pp. 4801–4806.

[War83] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate
Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983, Corrected reprint of
the 1971 edition.

E-mail address: eero.j.hakavuori@jyu.fi

E-mail address: enrico.ledonne@jyu.fi

(Hakavuori and Le Donne) Department of Mathematics and Statistics, University of
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