
INFINITE GEODESICS AND ISOMETRIC
EMBEDDINGS IN CARNOT GROUPS OF STEP 2

EERO HAKAVUORI

Abstract. In the setting of step 2 sub-Finsler Carnot groups with
strictly convex norms, we prove that all in�nite geodesics are lines.
It follows that for any other homogeneous distance, all geodesics
are lines exactly when the induced norm on the horizontal space
is strictly convex. As a further consequence, we show that all
isometric embeddings between such homogeneous groups are a�ne.
The core of the proof is an asymptotic study of the extremals given
by the Pontryagin Maximum Principle.
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1. Introduction

Carnot groups have rich algebraic and metric structures, and share
many properties with normed spaces. Recently several articles have
generalized classical regularity results of isometric embeddings in normed
spaces into the setting of Carnot groups. In real normed spaces, there
are two simple criteria for an isometric embedding to be a�ne: sur-
jectivity or strict convexity of the norm on the target. Both regularity
criteria have analogues for isometric embeddings of Carnot groups.
Surjective isometric embeddings behave in the Carnot group case

similarly as they do in the normed-space case. Namely, isometries
between arbitrary (open subsets of) Carnot groups are a�ne [LDO16],
i.e., compositions of left translations and group homomorphisms. For
globally de�ned isometries, there is an even more general result that
isometries between connected nilpotent metric Lie groups are a�ne
[KLD17].
For non-surjective isometric embeddings, it was proved in [Kis03]

that if G is a sub-Riemannian Carnot group of step 2, then all isometric
embeddings R ↪→ G, i.e., all in�nite geodesics, are a�ne. This property
was coined the geodesic linearity property in [BFS18], and was used as
an alternative to the strict convexity criterion as the two conditions are
equivalent in normed spaces. More precisely, it was shown in [BFS18]
that ifHn is a Heisenberg group with a homogeneous distance satisfying
the geodesic linearity property, then all isometric embeddings Rm ↪→
Hn and Hm ↪→ Hn are a�ne.
It was conjectured in [BFS18] and subsequently proved in [BC18]

that for Heisenberg groups the geodesic linearity property is equivalent
to strict convexity of the projection norm, see De�nition 2.4. While the
point of view presented in [BFS18] is purely metric, the essential tools
of the proof in [BC18] arise from considering an isometric embedding
R ↪→ Hn as an optimal control problem, and reformulating the �rst
order necessary criterion of the Pontryagin Maximum Principle in the
language of convex analysis.
The goal of this paper is to extend the main results of [BFS18] and

[BC18] to arbitrary Carnot groups of step 2. The central object of
study is again the Pontryagin Maximum Principle, from which relevant
invariants will be extracted by an asymptotic study of the optimal
controls. The main result of the paper is the following:

Theorem 1.1. In every sub-Finsler Carnot group of step 2 with a
strictly convex norm, every in�nite geodesic is a�ne.

Corollary 1.2. Let G be a strati�ed group of step 2 equipped with a
homogeneous distance d such that the projection norm of d is strictly
convex. Then every in�nite geodesic in (G, d) is a�ne.

The necessity of the strict convexity assumption is a direct conse-
quence of the necessity of strict convexity for linearity of geodesics in



INFINITE GEODESICS AND ISOMETRIC EMBEDDINGS 3

the normed-space case, see Proposition 5.2. Examples may also be
found from the singular geodesics for the non-strictly convex `∞ sub-
Finsler norm exhibited in [BBLDS17] and [ALDS19].
The restriction to step 2 is motivated by the known counterexample

in the simplest Carnot group of step 3, the sub-Riemannian Engel
group. The complete study of geodesics in the sub-Riemannian Engel
group in [AS15] gives the �rst (and to date essentially only) known
example of a non-a�ne in�nite geodesic in a sub-Riemannian Carnot
group. Note that in general, very little is known about geodesics even
in the sub-Riemannian case, see [HLD16, MPV18a, HLD18, BCJ+18,
BdSFPR18] for some recent results.
The proof for Heisenberg groups in [BFS18] that the geodesic lin-

earity property of the target implies that all isometric embeddings
are a�ne works also more generally for strati�ed groups, see Proposi-
tion 6.2. Consequently, Corollary 1.2 leads to the analogous rigidity
result for arbitrary isometric embeddings:

Theorem 1.3. Let (H, dH) and (G, dG) be strati�ed groups with ho-
mogeneous distances such that G has step 2 and the projection norm
of dG is strictly convex. Then every isometric embedding (H, dH) ↪→
(G, dG) is a�ne.

It is worth remarking that although there are no explicit restric-
tions on the domain (H, dH) in Theorem 1.3, the mere existence of
an isometric embedding (H, dH) ↪→ (G, dG) implies some restrictions.
In particular, Pansu's Rademacher theorem [Pan89] implies that there
must exist an injective homogeneous homomorphism H → G. It fol-
lows that H has step at most 2 and rank at most the rank of G.

1.1. Structure of the paper. Section 2 presents the relevant de�-
nitions that will be used throughout the rest of the paper and some
basic lemmas. The main points of interest are properties of blowdowns
of geodesics, i.e., geodesics �viewed from afar�, and the observations
about subdi�erentials of convex functions.
Sections 3�5 are devoted to the proofs of Theorem 1.1 and Corol-

lary 1.2 about in�nite geodesics. Section 3 rephrases the classical �rst
order optimality condition of the Pontryagin Maximum Principle in the
setting of a step 2 sub-Finsler Carnot group. In the sub-Riemannian
case the PMP reduces to a linear ODE for the controls. This is no
longer true in the sub-Finsler case, making explicit solution of the sys-
tem unfeasible. Nonetheless, the PMP has a form (Proposition 3.1)
that is well suited to the study of the asymptotic behavior of optimal
controls. The key object is the bilinear form B : V1 × V1 → R.
Section 4 covers the aforementioned asymptotic study. The goal of

the section is to study blowdowns of in�nite geodesics through the
behavior of their controls. Using integral averages of controls, it is
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shown that any blowdown control must in fact be contained in the
kernel of the bilinear form B.
Section 5 wraps up the proof of Theorem 1.1 using the conclusions

of the previous sections. This section is where the strict convexity of
the norm is critical. The importance of the assumption is that any
linear map has a unique maximum on the ball. By observing that any
element of kerB de�nes an invariant along the corresponding optimal
control, the uniqueness is exploited to prove that in�nite geodesics
must be invariant under blowdowns. Corollary 1.2 follows from the
sub-Finsler case by the observation that the length metric associated
with a homogeneous norm is always a sub-Finsler metric.
Section 6 covers the proof of Theorem 1.3 about isometric embed-

dings as a consequence of Corollary 1.2. The link between geodesics
and general isometric embeddings arises from considering a foliation by
horizontal lines in the domain and studying the induced foliation by
in�nite geodesics in the image. The a�nity of isometric embeddings
follows from the observation that two lines are at a sublinear distance
from each other if and only if they are parallel.

2. Preliminaries

2.1. Strati�ed groups and homogeneous distances.

De�nition 2.1. A strati�ed group is a Lie group G whose Lie algebra
has a decomposition g = V1 ⊕ V2 ⊕ · · · ⊕ Vs such that Vs 6= {0} and
[V1, Vk] = Vk+1 for all k = 1, . . . , s, with the convention that Vs+1 = {0}.
The rank and step of the strati�ed group G are the integers r = dimV1
and s respectively.

De�nition 2.2. A dilation by a factor λ ∈ R on a strati�ed group
G is the Lie group automorphism δλ : G → G de�ned for any X =
X1 + · · ·+Xs ∈ V1 ⊕ · · · ⊕ Vs by

δλ exp(X1 +X2 + · · ·+Xs) = exp(λX1 + λ2X2 + · · ·+ λsXs).

De�nition 2.3. A homogeneous distance on a strati�ed group G is a
left-invariant distance d, which is one-homogeneous with respect to the
dilations, i.e., which satis�es

d(δλ(g), δλ(h)) = λd(g, h) ∀λ > 0, ∀g, h ∈ G.

2.2. The projection norm.

De�nition 2.4. LetG be a strati�ed group and let d be a homogeneous
distance on G. The projection norm associated with the homogeneous
distance d is the function

‖·‖d : V1 → R, ‖X‖d = d(e, exp(X)),

where e is the identity element of the group G.
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It is not immediate that ‖·‖d de�nes a norm. In the setting of the
Heisenberg groups, this is proved in [BFS18, Proposition 2.8]. Their
proof works with minor modi�cation for any homogeneous distances
in arbitrary strati�ed groups and is captured in the following lemmas.
The triangle inequality of ‖·‖d is the only non-trivial part. In order
to make use of the triangle inequality of the distance d, the following
distance estimate is used.

Lemma 2.5. Let πV1 : g = V1 ⊕ · · · ⊕ Vs → V1 be the projection with
respect to the direct sum decomposition. Then

‖X‖d ≤ d(e, exp(X + Y )) ∀X ∈ V1, ∀Y ∈ [g, g],

so the horizontal projection π = πV1 ◦ log : (G, d) → (V1, ‖·‖d) is a
submetry.

Proof. Observe �rst that for any X ∈ V1 and Y = Y2 + · · · + Ys ∈
V2 ⊕ · · · ⊕ Vs = [g, g], and any n ∈ N, homogeneity and the triangle
inequality imply that

nd(e, exp(X +
1

n
Y2 + · · ·+ 1

ns−1
Ys)) = d(e, exp(nX + nY ))

≤ nd(e, exp(X + Y )).

Continuity of the distance then gives the bound

d(e, exp(X)) = lim
n→∞

d(e, exp(X +
1

n
Y2 + · · ·+ 1

ns−1
Ys))

≤ d(e, exp(X + Y ))

for any X ∈ V1 and Y ∈ [g, g] as claimed.
The previous estimate implies the containment π(B(e, r)) ⊂ B‖·‖d(0, r)

for the projection of any ball B(e, r) ⊂ G. On the other hand, De�ni-
tion 2.4 of the projection norm directly implies the opposite contain-
ment

B‖·‖d(0, r) = V1 ∩ logB(e, r) ⊂ π(B(e, r)).

By left-invariance of the distance d it follows that the map π is a
submetry. �

Remark 2.6. The estimate of Lemma 2.5 is in general false for non-
homogeneous left-invariant distances. Examples of the failure may be
found by taking any homogeneous metric and tilting the decomposition
V1 ⊕ [g, g].
Namely, let d be any homogeneous distance on a strati�ed group

G for which the inequality of Lemma 2.5 is strict when Y 6= 0, for
instance a sub-Riemannian distance. De�ne a new strati�cation for the
Lie group G by replacing the �rst layer V1 with Ṽ1, where some vector
X ∈ V1 is replaced by X +Y for some central vector Y ∈ [g, g]. As the
Lie brackets and group law are unchanged, d is a left-invariant distance
for the resulting strati�ed group G̃, but is no longer homogeneous due



INFINITE GEODESICS AND ISOMETRIC EMBEDDINGS 6

to the tilting of the layers. In this way, the notion of projection to the
�rst layer is changed, and the estimate of Lemma 2.5 fails in (G̃, d) for
the vectors X + Y ∈ Ṽ1 and −Y ∈ [g, g].

Lemma 2.7. The projection norm is a norm.

Proof. Positivity and homogeneity of the projection norm ‖·‖d follow
immediately from positivity and homogeneity of the homogeneous dis-
tance d. For the triangle inequality, let X,X ′ ∈ V1 and let Y ∈ [g, g]
be the element given by the Baker-Campbell-Hausdor� formula such
that

exp(X) exp(X ′) = exp(X +X ′ + Y ).

Lemma 2.5 gives the bound ‖X +X ′‖d ≤ d(e, exp(X + X ′ + Y )). By
the choice of Y , the left-invariance and triangle inequality of d conclude
the claim:

d(e, exp(X +X ′ + Y )) = d(e, exp(X) exp(X ′)) ≤ ‖X‖d + ‖X ′‖d . �

2.3. Length structures and sub-Finsler Carnot groups.

De�nition 2.8. Let (X, d) be a metric space. Let Ω be the space of
recti�able curves of X and let `d : Ω → R be the length functional.
For points x, y ∈ X, denote by Ω(x, y) ⊂ Ω the space of all recti�able
curves connecting the points x and y. The length metric associated
with the metric d is the map d` : X ×X → R ∪ {∞} de�ned by

d`(x, y) := inf{`d(γ) : γ ∈ Ω(x, y)}.

If d = d`, then the metric d is called a length metric.

See [BBI01, Section 2.3] for further information about length struc-
tures induced by metrics. For the purposes of this paper, only the spe-
cial case of the length metric associated with a homogeneous distance
will be relevant. Such a length metric always determines a sub-Finsler
Carnot group, see De�nition 2.10 and Lemma 5.1.

De�nition 2.9. Let G be a strati�ed group. Denote by Lg : G →
G the left-translation Lg(h) = gh. An absolutely continuous curve
γ : [0, T ] → G is a horizontal curve if (Lγ(t)−1)∗γ̇(t) ∈ V1 for almost
every t ∈ [0, T ]. The control of a horizontal curve γ is its left-trivialized
derivative, i.e., the map

u : [0, T ]→ V1, u(t) = (Lγ(t)−1)∗γ̇(t).

De�nition 2.10. A sub-Finsler Carnot group is a strati�ed group G
equipped with a norm ‖·‖ : V1 → R. The norm induces a homogeneous
distance dSF via the length structure induced by ‖·‖ over horizontal
curves.
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More explicitly, for a horizontal curve γ : [0, T ] → G with control
u : [0, T ]→ V1, de�ne the length

`‖·‖(γ) =

∫ T

0

‖u(t)‖ dt.

For g, h ∈ G, let Ω(g, h) be the family of all horizontal curves connect-
ing g and h. The sub-Finsler distance dSF is de�ned as

dSF (g, h) := inf{`‖·‖(γ) : γ ∈ Ω(g, h)}.

2.4. Geodesics and blowdowns.

De�nition 2.11. Let G be a strati�ed group equipped with a homo-
geneous distance d. A geodesic is an isometric embedding γ : [0, T ] →
(G, d). That is, a geodesic satis�es

d(γ(t), γ(s)) = |t− s| ∀t, s ∈ [0, T ].

In the proof of Theorem 1.3 it will be convenient to consider also
curves which preserve distances up to a constant factor. A curve
γ : [0, T ] → (G, d) for which there exists some constant C > 0 such
that

d(γ(t), γ(s)) = C |t− s| ∀t, s ∈ [0, T ]

will be called a geodesic with speed C.

Lemma 2.12. Let γ : [0,∞) → G be a horizontal curve with control
u : [0,∞)→ V1 and let λ > 0 be a dilating factor. Then the dilated and
reparametrized curve

γλ : [0,∞)→ G, γλ(t) := δ1/λγ(λt),

has the control

uλ : [0,∞)→ V1, uλ(t) := u(λt).

Proof. Since the dilations are group homomorphisms, the claim follows
directly by the chain rule and De�nition 2.9 of a control:

d

dt
γλ(t) = (δ1/λ)∗

d

dt
γ(λt) = (δ1/λ)∗(Lγ(λt))∗u(λt)λ = (Lγλ(t))∗uλ(t). �

De�nition 2.13. Let γ : [0,∞) → G be a horizontal curve. Suppose
for some sequence of scales λk →∞ the pointwise limit

γ̃ : [0,∞)→ G, γ̃(t) = lim
k→∞

γλk(t) = lim
k→∞

δ1/λkγ(λkt)

exists. Such a curve γ̃ is called a blowdown of the curve γ along the
sequence of scales λk.

Remark 2.14. If the curve γ is L-Lipschitz, then the curves γλ are also
all L-Lipschitz. Hence by Arzelà-Ascoli, up to taking a subsequence a
blowdown along a sequence of scales will always exist.
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Lemma 2.15. Let γ : [0,∞) → G be an in�nite geodesic and let γ̃ =
lim
k→∞

γλk be any blowdown of the curve γ. Let u and ũ be the controls

of the curves γ and γ̃ respectively. Then

(i) The curve γ̃ is an in�nite geodesic.
(ii) Up to taking a subsequence, the dilated controls uλk converge to

the control ũ in L2
loc

([0,∞);V1).

Proof. (i). The curve γ̃ is a geodesic as the pointwise limit of geodesics.
(ii). The claim follows from [MPV18b, Remark 3.13]. The point is

that by weak compactness of closed balls in L2
loc

([0,∞);V1) there exists
a weakly convergent subsequence uλ ⇀ v to some v ∈ L2

loc
([0,∞);V1).

The de�nitions of control and weak convergence imply that v is a con-
trol for γ̃, so in particular ũ(t) = v(t) for almost every t. Finally, the
geodesic assumption implies that ‖u(t)‖ ≡ 1 ≡ ‖ũ(t)‖, so the weak con-
vergence is upgraded to strong convergence uλ → ũ in L2

loc
([0,∞);V1).

�

Lemma 2.16. Let G be a sub-Finsler Carnot group with a strictly
convex norm and let γ : [0,∞)→ G be an in�nite geodesic. Then there
exists a sequence λk → ∞ such that the blowdown γ̃ = lim

k→∞
γλk is

a�ne.

Proof. If the geodesic γ is itself a�ne, then the claim is immediate.
Suppose then that γ is not a�ne, i.e., not a left translation of a one
parameter subgroup. In particular, the geodesic γ has non-constant
control. Hence the horizontal projection π ◦ γ : [0,∞)→ G/[G,G] has
non-constant derivative, and is also not a�ne. Since G/[G,G] is a
normed space with a strictly convex norm, the projection curve π ◦ γ
cannot be a geodesic. Then [HLD18, Theorem 1.4] states that there
exists a Carnot subgroup H < G of lower rank such that all blowdowns
of the geodesic γ are contained in H.
Let the curve β : [0,∞)→ H < G be any blowdown. By Lemma 2.15(i),

β is a geodesic. If β is also not a�ne, then iterating the above there
exists a Carnot subgroup K < H < G of even lower rank such that all
blowdowns of β are in K. Blowdowns of the geodesic β are also blow-
downs of the geodesic γ by a diagonal argument, so the claim follows
by induction, since a Carnot subgroup of rank 1 is just a one parameter
subgroup. �

2.5. Subdi�erentials. In this section, let V be some �xed �nite di-
mensional vector space and let E : V → R be a convex continuous
function. In the application in Section 5, the space V will be the hor-
izontal layer V1 ⊂ g, and the convex function of interest will be a
squared norm 1

2
‖·‖2.
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De�nition 2.17. A linear function a : V → R is a subdi�erential of
the function E at a point Y ∈ V if

a(X − Y ) ≤ E(X)− E(Y ) ∀X ∈ V .
The collection of all subdi�erentials a at a point Y ∈ V is denoted
∂E(Y ) ⊂ V ∗.

The following lemmas condense the properties of convex functions
and their subdi�erentials that will be relevant for the article. They
will be utilized in the proof of Theorem 1.1 in Section 5. The �rst
lemma is the continuity and compactness of subdi�erentials.

Lemma 2.18. Let Yk → Y ∈ V be a converging sequence and let ak ∈
∂E(Yk). Then there exists a converging subsequence ak → a ∈ ∂E(Y ).

Proof. [Roc70, Theorem 24.7] shows (among other things) that since
the set of points S = {Yi : i ∈ N} ∪ {Y } is compact, the family of
subdi�erentials

∂E(S) :=
⋃
X∈S

{a ∈ ∂E(X)}

is also compact. Hence there exists a converging subsequence ak →
a ∈ ∂E(S). The claim is concluded by [Roc70, Theorem 24.4], which
shows that the convergences Yk → Y and ak → a with ak ∈ ∂E(Yk)
imply that a ∈ ∂E(Y ). �

The second lemma is a simple estimate on a subdi�erential of the
squared norm.

Lemma 2.19. Let ‖·‖ be a norm on V and let a : V → R be a sub-
di�erential of the squared norm E = 1

2
‖·‖2 at a point Y ∈ V . Then

|a(X)| ≤ ‖X‖ ‖Y ‖ for all X ∈ V , and a(Y ) = ‖Y ‖2.

Proof. For any points X, Y ∈ V and any ε > 0, the subdi�erential
condition a ∈ ∂E(Y ) implies that

εa(X) = a(Y + εX − Y ) ≤ E(Y + εX)− E(Y )

≤ 1

2

(
(‖Y ‖+ ε ‖X‖)2 − ‖Y ‖2

)
= ε ‖X‖ ‖Y ‖+

1

2
ε2 ‖X‖2 .

Letting ε→ 0 proves the bound a(X) ≤ ‖X‖ ‖Y ‖. Repeating the same
consideration for −X, gives the opposite bound −a(X) ≤ ‖X‖ ‖Y ‖.
For the equality a(Y ) = ‖Y ‖2, let ε > 0, and observe that a similar

computation as before shows that

−εa(Y ) = a((1− ε)Y − Y ) ≤ E((1− ε)Y )− E(Y )

=
1

2
((1− ε)2 − 1) ‖Y ‖2 = (−ε+

1

2
ε2) ‖Y ‖2 .

That is, a(Y ) ≥ (1 − 1
2
ε) ‖Y ‖2. The limit as ε → 0 and the previous

upper bound prove the claim. �
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3. Step 2 sub-Finsler Pontryagin Maximum Principle

In this section, the Pontryagin Maximum Principle will be rephrased
in a convenient form for the purposes of Theorem 1.1. The precise
statement to be proved is the following:

Proposition 3.1 (Step 2 sub-Finsler PMP.). Let G be a step 2 sub-
Finsler Carnot group with an arbitrary norm ‖·‖ : V1 → R and let
0 ≤ T ≤ ∞. If u : [0, T ] → V1 is the control of a geodesic, then
there exists an absolutely continuous curve a : [0, T ]→ V ∗1 and a skew-
symmetric bilinear form B : V1 × V1 → R such that

(i) At almost every t ∈ [0, T ], the curve a has the derivative

d

dt
a(t)Y = B(u(t), Y ) ∀Y ∈ V1.

(ii) At almost every t ∈ [0, T ], the linear map a(t) : V1 → R is a
subdi�erential of the squared norm 1

2
‖·‖2 at the point u(t) ∈ V1.

Remark 3.2. Up to changing the optimal control u on a set of measure
zero, the subdi�erential condition (ii) may be taken to hold for all
t ∈ [0, T ].
Namely, if condition (ii) holds on a subset I ⊂ [0, T ] of full measure,

for any t ∈ [0, T ] \ I, pick any converging sequence I 3 tk → t such
that the limit limk→∞ u(tk) exists, and rede�ne u(t) = limk→∞ u(tk).
By the continuity of subdi�erentials given by Lemma 2.18, it follows
that a(t) is a subdi�erential of the squared norm at the point u(t).

Remark 3.3. In the sub-Riemannian case, the squared norm 1
2
‖·‖2 is

di�erentiable at every point, and the unique subdi�erential is the inner
product a(t) = 〈u(t), ·〉. The derivative condition (i) then gives the
usual linear ODE of controls in the implicit form

〈u̇(t), Y 〉 =
d

dt
〈u(t), Y 〉 = B(u(t), Y ) ∀Y ∈ V1.

3.1. General statement of the PMP. For the rest of Section 3,
let G be a �xed sub-Finsler Carnot group of step 2 with an arbitrary
norm ‖·‖ : V1 → R, and let u : [0, T ]→ V1 be the control of a geodesic
γ : [0, T ]→ G.
Consider �rst the �nite time T < ∞ case. By De�nition 2.10 of

the sub-Finsler distance, the control u minimizes the length functional∫ T
0
‖u(t)‖ dt among all controls de�ning curves with the same endpoints

as γ. Since a geodesic has by de�nition constant speed, it follows that

u is also a minimizer of the energy functional 1
2

∫ T
0
‖u(t)‖2 dt.

De�ne the left-trivialized Hamiltonian

(1) h : V1 × R× g∗ → R, h(u, ξ, λ) = λ(u) +
1

2
ξ ‖u‖2 .

By the Pontryagin Maximum Principle as presented in [AS04, Theo-

rem 12.10], the control u : [0, T ]→ V1 can minimize the energy 1
2

∫ T
0
‖u(t)‖2 dt
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only if there is an everywhere non-zero absolutely continuous dual curve
t 7→ (ξ, λ(t)) ∈ R× T ∗γ(t)G such that

ξ ≤ 0(2)

λ̇ = ~hu(t),ξ(λ) a.e. t ∈ [0, T ],(3)

hu(t),ξ(λ(t)) ≥ hv,ξ(λ(t)) ∀v ∈ V1 a.e. t ∈ [0, T ].(4)

Here hv,ξ and ~hv,ξ, for v ∈ V1, are the left-invariant Hamiltonian and
the associated Hamiltonian vector �eld respectively.
More explicitly, hv,ξ : T ∗G → R is the function de�ned from the

left-trivialized Hamiltonian (1) in the natural way by

hv,ξ(λ) = h(v, ξ, L∗gλ), ∀λ ∈ T ∗gG,

and ~hv,ξ is the Hamiltonian vector �eld associated with the left-invariant
Hamiltonian hv,ξ by duality through the canonical symplectic form on
the cotangent bundle, see [ABB19, Section 4] for more details within
the context of the PMP in the sub-Riemannian setting.
Observe that if (ξ, λ(t)) is a dual curve satisfying the conditions

(2)�(4) of the PMP, then also any scalar multiple (Cξ,Cλ(t)) for any
C > 0 satis�es the conditions (2)�(4) of the PMP. This observation
allows the in�nite time case T =∞ to be handled as a limit of the �nite
time case. Namely, if u : [0,∞)→ V1 is the control of a geodesic, then
all its �nite restrictions u|[0,k] : [0, k] → V1 for k ∈ N are also controls
of geodesics, so by the above they have corresponding dual curves t 7→
(ξk, λk(t)). By taking suitable rescalings of the (ξk, λk), there exists a
non-zero limit (ξ∞, λ∞), which then satis�es the conditions (2)�(4) of
the PMP on the entire interval [0,∞).
Condition (2) is a binary condition ξ = 0 or ξ 6= 0. The case ξ = 0

is the case of an abnormal control u, and may be ignored in the step 2
setting, since the second order necessary criterion of the Goh condition
(see e.g. [AS04, Section 20]) implies that there are no strictly abnormal
extremals in step 2. By rescaling (ξ, λ) it therefore su�ces to consider
the normal case ξ = −1.

3.2. The PMP in left-trivialized coordinates. Let X1, . . . , Xr be
a basis of V1. Fix a basis Xr+1, . . . , Xn for V2 = [V1, V1] by choosing a
maximal linearly independent subset of the Lie brackets {[Xi, Xj] : 1 ≤
i < j ≤ r}. By an abuse of notation, denote also by X1, . . . , Xn, the
corresponding left-invariant frame of TG. Let θ1, . . . , θn be the dual
left-invariant frame of T ∗G. Writing the curve λ(t) in left-trivialized
coordinates as

λ(t) =
n∑
i=1

λi(t)θi(γ(t)),
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the Hamiltonian ODE (3) in the normal case ξ = −1 takes the simpler
form

(5) λ̇i(t) = λ(t)
([ r∑

j=1

uj(t)Xj, Xi

]
(γ(t))

)
, i = 1, . . . , n,

see [AS04, Section 18.3] for the explicit computation.

Proof of Proposition 3.1. The curve a : [0, T ] → V ∗1 will be given by
restricting the linear map

(6) a(t) := (Lγ(t))
∗λ(t) : g→ R

to V1. The skew-symmetric bilinear form B : V1×V1 → R will be given
by

(7) B(X, Y ) := a(t)[X, Y ].

The curve a(t) of (6) has in the left-invariant frame the same coef-
�cients as the curve λ(t), i.e., the coe�cients of a(t) =

∑n
i=1 ai(t)θi(e)

are exactly ai = λi. Left-translating the Hamiltonian ODE (5) to the
identity shows that for almost every t ∈ [0, T ], the components of the
curve have the derivatives

(8) ȧi(t) =
d

dt
λi(t) = a(t)[u(t), Xi], i = 1, . . . , n.

By the step 2 assumption, [u(t), Xi] = 0 for all the vertical compo-
nents i = r + 1, . . . , n, so the vertical coe�cients ar+1, . . . , an are all
constant. Therefore a(t)[X, Y ] =

∑n
i=r+1 aiθi([X, Y ]) is constant in t.

That is, the expression (7) de�nes a unique bilinear form B indepen-
dent from t.
Writing the system (8) in terms of the bilinear form B, the remaining

non-trivial equations are exactly

ȧi(t) = a(t)[u(t), Xi] = B(u(t), Xi), i = 1, . . . , r.

The derivative condition 3.1(i) follows by linearity, as for an arbitrary
vector Y = y1X1 + · · ·+ yrXr ∈ V1, the above implies that

d

dt
a(t)Y =

d

dt

n∑
i=1

ai(t)yi =
n∑
i=1

B(u(t), Xi)yi = B(u(t), Y ).

The subdi�erential condition 3.1(ii) for the linear functions a(t) fol-
lows from rephrasing the maximality condition (4). Namely, expand-
ing out the explicit expressions of the normal Hamiltonians hu(t),−1 and
hv,−1 from (1) and reorganizing terms, the maximality condition (4) is
equivalently stated as

a(t)v − a(t)u(t) ≤ 1

2
‖v‖2 − 1

2
‖u(t)‖2 ∀v ∈ V1 a.e. t ∈ [0, T ].

This is exactly De�nition 2.17 stating that the linear function a(t) is a
subdi�erential of the squared norm 1

2
‖·‖2 at the point u(t) ∈ V1. �
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4. Asymptotic behavior of controls

In this section, let u : [0,∞) → V1 be a �xed control satisfying the
PMP 3.1. Let a : [0,∞) → V ∗1 be the associated curve of subdi�eren-
tials and let B : V1 × V1 → R be the associated bilinear form.

Lemma 4.1. For every vector X ∈ V1,

lim
T→∞

B

(
−
∫ T

0

u(t) dt,X

)
= 0.

Proof. Fix an arbitrary vectorX ∈ V1. Bilinearity of the map B implies
that

(9) B

(
−
∫ T

0

u(t) dt,X

)
=

1

T

∫ T

0

B (u(t), X) dt.

Since the curve a is absolutely continuous, the derivative condition
PMP 3.1(i) implies that

(10)

∫ T

0

B(u(t), X) =

∫ T

0

d

dt
a(t)X = a(T )X − a(0)X.

By the subdi�erential condition PMP 3.1(ii), for almost every T , the
linear map a(T ) is a subdi�erential of the squared norm 1

2
‖·‖2 at the

point u(T ). Since ‖u(T )‖ ≡ 1 is constant, continuity of the curve a and
Lemma 2.19 imply the bound |a(T )X| ≤ ‖X‖ for every T ∈ [0,∞).
The identities (9) and (10) then imply the desired conclusion that

lim
T→∞

∣∣∣∣B(−∫ T

0

u(t) dt,X

)∣∣∣∣ ≤ lim
T→∞

2

T
‖X‖ = 0. �

Lemma 4.2. Let λk → ∞ be a diverging sequence and let uλk(t) =
u(λkt) be the corresponding dilated controls. If uλk → ũ in L2

loc
([0,∞);V1),

then ũ(t) ∈ kerB for almost every t ∈ [0,∞).

Proof. By the Lebesgue di�erentiation theorem it su�ces to prove that
−
∫ b
a
ũ(t) dt ∈ kerB for any 0 ≤ a < b <∞.
Fix 0 ≤ a < b < ∞. By assumption uλk → ũ in L2([a, b];V1), so

there exists some error term ε : N→ V1 with lim
k→∞

ε(k) = 0 such that

(11) −
∫ b

a

ũ(t) dt = −
∫ b

a

u(λkt) dt+ ε(k) = −
∫ bλk

aλk

u(t) dt+ ε(k).

The right-hand integral average can further be expressed as a di�erence
of integral averages as

(12) −
∫ bλk

aλk

u(t) dt =
b

b− a
· −
∫ bλk

0

u(t) dt− a

b− a
· −
∫ aλk

0

u(t) dt.

Lemma 4.1 implies that for any X ∈ V1

lim
k→∞

B

(
−
∫ bλk

0

u(t) dt,X

)
= lim

k→∞
B

(
−
∫ aλk

0

u(t) dt,X

)
= 0.
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Combining the identities (11) and (12) and using bilinearity of B then

implies that B
(
−
∫ b
a
ũ(t) dt,X

)
= 0. Since the vector X ∈ V1 was

arbitrary, this proves the desired claim that −
∫ b
a
ũ(t) dt ∈ kerB. �

5. Affinity of infinite geodesics

5.1. Sub-Finsler Carnot groups. The proof of Theorem 1.1 will now
be concluded. The key ingredients are the sub-Finsler PMP 3.1, the
knowledge of asymptotic behavior of blowdown controls from Lemma 4.2,
and the convex analysis arguments from Subsection 2.5.

Proof of Theorem 1.1. Let γ : [0,∞) → G be an in�nite geodesic and
let u : [0,∞) → V1 be its control. Let a : [0,∞) → V ∗1 be the curve of
subdi�erentials of the squared norm 1

2
‖·‖2 and let B : V1 × V1 → R be

the skew-symmetric bilinear form given by the PMP 3.1.
By Lemma 2.16, there exists a sequence λk → ∞ such that the

blowdown γ̃ = lim
k→∞

δ1/λk ◦ γ ◦ δλk : [0,∞) → G is a�ne, i.e., a left

translation of a one parameter subgroup. By Lemma 2.15, taking a
subsequence if necessary, the dilated controls uλk(t) = u(λkt) converge
in L2

loc
([0,∞);V1) to the control ũ of the curve γ̃. Since the curve γ̃ is

a�ne, the control ũ is constant. That is, there exists a constant vector
Y ∈ V1, which for almost every t ∈ [0,∞) is the limit

(13) Y = ũ(t) = lim
k→∞

u(λkt).

By Lemma 4.2, Y ∈ kerB, so the derivative condition PMP 3.1(i)
implies that the curve t 7→ a(t)Y is constant a(t)Y ≡: C.
Fix any t ∈ [0,∞) such that the limit (13) holds. By Lemma 2.18,

up to taking a further subsequence, the subdi�erentials a(λkt) of the
squared norm 1

2
‖·‖2 at the points u(λkt) converge to a subdi�erential

ã : V1 → R of the squared norm 1
2
‖·‖2 at the point Y . Moreover,

since a(t)Y ≡ C is constant, also the limit evaluates to ãY = C.
Applying Lemma 2.19 for the subdi�erential ã shows that C = ãY =
‖Y ‖2. Similarly applying Lemma 2.19 for the subdi�erential a(t) shows
that a(t)u(t) = ‖u(t)‖2. Since the curves γ and γ̃ are both geodesics,
‖u(t)‖ = 1 = ‖Y ‖, so combining all of the above gives the equality

a(t)Y = 1 = a(t)u(t).

Consequently for any convex combination X ∈ V1 of u(t) and Y ,
Lemma 2.19 implies that

1 = a(t)X ≤ ‖X‖ ‖u(t)‖ = ‖X‖ .
By strict convexity of the norm this is only possible when u(t) = Y .
Repeating the same argument at all the times t satisfying the limit

(13), it follows that u(t) = Y for almost every t ∈ [0,∞), so the
geodesic γ is a�ne. �
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5.2. Arbitrary homogeneous distances. The proof of Corollary 1.2
about in�nite geodesics for arbitrary homogeneous distances follows
from the sub-Finsler case by passing to the induced length metric. The
relevant properties are captured in the next lemma.

Lemma 5.1. Let (G, d) be a strati�ed group equipped with a homoge-
neous distance d and let d` be the length metric of d. Then

(i) (G, d`) is a sub-Finsler Carnot group.
(ii) All geodesics of (G, d) are also geodesics of (G, d`).
(iii) The projection norm of d is the sub-Finsler norm of d`.

Proof. (i). In [LD15, Theorem 1.1] sub-Finsler Carnot groups are char-
acterized as the only geodesic metric spaces that are locally compact,
isometrically homogeneous, and admit a dilation. Therefore it su�ces
to verify that the length metric associated with a homogeneous distance
satis�es these properties.
The claims of isometric homogeneity and admitting a dilation follow

directly from the corresponding properties of the metric d. Namely,
since left-translations are isometries of the metric d, they preserve the
length of curves, and hence are also isometries of the length metric d`.
Similarly since dilations scale the length of curves linearly, they are
dilations for the length metric d`.
Finiteness of the length metric d` follows from the strati�cation as-

sumption: each element g ∈ G can be written as a product of elements
in exp(V1) and the horizontal lines t 7→ exp(tX) are all geodesics.
Therefore concatenation of suitable horizontal line segments de�nes
a �nite length curve from the identity e to any desired point g. It
follows that the length metric d` determines a well de�ned homoge-
neous distance on G, so by [LDR19, Proposition 2.26] it induces the
manifold topology of G. In particular (G, d`) is a boundedly com-
pact length space, so it is a geodesic metric space (see [BBI01, Corol-
lary 2.5.20]). Applying [LD15, Theorem 1.1] shows that (G, d`) is a
sub-Finsler Carnot group.
(ii). The lengths of all recti�able curves in the original metric

d and its associated length metric d` always agree (see [BBI01, Propo-
sition 2.3.12]). In particular, the claim that the geodesics of (G, d) are
geodesics of (G, d`) follows.
(iii). The horizontal projection π : (G, d) → V1 is a submetry both

for the sub-Finsler norm ‖·‖SF (by de�nition) and for the projection
norm ‖·‖d (by Lemma 2.5). Hence the norms ‖·‖SF and ‖·‖d have
exactly the same balls, so ‖·‖SF = ‖·‖d.

�

Proof of Corollary 1.2. Let (G, d) be a strati�ed group of step 2 equipped
with a homogeneous distance d whose projection norm is strictly con-
vex, and let γ : [0,∞)→ (G, d) be an in�nite geodesic.
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Let d` be the length-metric associated with d. By Lemma 5.1(i)
and (ii), the curve γ is also a geodesic of (G, ‖·‖), where ‖·‖ : V1 → R
is the sub-Finsler norm of the sub-Finsler metric d`. Moreover by
Lemma 5.1(iii) the norm ‖·‖ = ‖·‖d is by assumption strictly convex.
Consequently by Theorem 1.1, the geodesic γ is a�ne. �

The necessity of the strict convexity assumption is an immediate
consequence of the classical case of normed spaces by the following
simple lifting argument.

Proposition 5.2. Let G be a strati�ed group equipped with an arbitrary
homogeneous distance d. If the projection norm of d is not strictly
convex, then there exist an in�nite geodesic γ : R → G which is not
a�ne.

Proof. If the projection norm ‖·‖d : V1 → R is not strictly convex, then
there exists a non-linear geodesic β : R → V1. For example, if the
norm ‖X + cY ‖d is constant for −ε ≤ c ≤ ε, then the curve β(t) =
tX + ε sin(t)Y is an in�nite geodesic.
By Lemma 2.5, the projection π : (G, d)→ (V1, ‖·‖) is a submetry, so

the geodesic β : R → V1 lifts to an in�nite geodesic γ : R → G. Since
the projection is a homomorphism and the geodesic β is not a�ne,
neither is the geodesic γ. �

6. Affinity of isometric embeddings

Theorem 1.3 about isometric embeddings being a�ne follows from
Corollary 1.2 by an abstraction of the argument of [BFS18, Theo-
rem 4.1]. The abstract version of their statement is Proposition 6.2.
The key link between the metric and algebraic properties is the follow-
ing simple lemma stating that the distance between two lines grows
sublinearly if and only if the lines are parallel.

Lemma 6.1. Let (G, d) be a strati�ed group with a homogeneous dis-
tance. Then for all points g, h ∈ G and all vectors X, Y ∈ V1

d(g exp(tX), h exp(tY )) = o(t) as t→∞ ⇐⇒ X = Y .

Proof. Consider dilations by 1/t. Since dilations are homomorphisms,
continuity of the distance gives the limit

lim
t→∞

d(g exp(tX), h exp(tY ))

t
= lim

t→∞
d(δ1/t(g) exp(X), δ1/t(h) exp(Y ))

= d(exp(X), exp(Y )). �

Proposition 6.2. Let (H, dH) and (G, dG) be strati�ed groups with
homogeneous distances such that all in�nite geodesics in G are a�ne.
Then every isometric embedding (H, dH) ↪→ (G, dG) is a�ne.

Proof. Let ϕ : (H, dH) ↪→ (G, dG) be an isometric embedding. Since
left-translations are isometries, it su�ces to consider the case when the
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map ϕ preserves the identity element, and prove that such an isometric
embedding is a homomorphism.
Consider an arbitrary point h ∈ H and a horizontal vector X ∈ V H

1 .
The horizontal line t 7→ h exp(tX) is an in�nite geodesic with speed
‖X‖H through the point h ∈ H. The image of the line under the
isometric embedding ϕ is an in�nite geodesic in the group G through
the point ϕ(h) with exactly the same speed. By assumption all in�nite
geodesics in the groupG are horizontal lines, so there exists some vector
Y ∈ V G

1 (a priori depending on the point h and the vector X) with
‖X‖H = ‖Y ‖G such that

ϕ(h exp(tX)) = ϕ(h) exp(tY ) ∀t ∈ R.
Consider then the two parallel in�nite geodesics t 7→ exp(tX) and

t 7→ h exp(tX) with speed ‖X‖H . Repeating the previous considera-
tion, since the map ϕ was assumed to preserve the identity, there exists
another horizontal direction Z ∈ V G

1 such that ϕ(exp(tX)) = exp(tZ).
By Lemma 6.1, the distance between the two lines in the groupH grows
sublinearly. Since the map ϕ is an isometric embedding, also the dis-
tance between the image lines in the group G grows sublinearly. Hence
applying Lemma 6.1 in the converse direction implies that Y = Z.
That is, the vector Y ∈ V G

1 does not depend on the point h ∈ H, only
on the vector X ∈ V H

1 .
The above shows that there is a well de�ned map ϕ∗ : V

H
1 → V G

1

such that ϕ(h exp(X)) = ϕ(h) exp(ϕ∗X). In particular,

(14) ϕ(h1h2) = ϕ(h1)ϕ(h2) ∀h1 ∈ H ∀h2 ∈ exp(V H
1 ).

Since the group H is strati�ed, the subset exp(V H
1 ) generates the entire

group H. That is, any element h ∈ H can be written as a �nite product
of elements in exp(V H

1 ). Applying the identity (14) repeatedly using
such decompositions shows that the map ϕ is a homomorphism. �

Theorem 1.3 follows directly by combining the statements of Corol-
lary 1.2 and Proposition 6.2.
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