Skip to main content
\(\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\restr}[2]{\left.#1\right\vert_{#2}} \newcommand{\der}{\operatorname{der}} \newcommand{\Aut}{\operatorname{Aut}} \newcommand{\ad}{\operatorname{ad}} \newcommand{\Ad}{\operatorname{Ad}} \newcommand{\positiveset}{\mathbf{A}_+} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Gradings for nilpotent Lie algebras
Eero Hakavuori, Ville Kivioja, Terhi Moisala, Francesca Tripaldi
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Acknowledgements
1
Introduction
Overview
Main results
Structure of the paper
2
Gradings
Gradings and equivalences
Universal gradings
Gradings induced by tori
Maximal gradings
Enumeration of torsion-free gradings
3
Constructions
Stratifications
Positive gradings
Maximal gradings
4
Applications
Structure from maximal gradings
Classification of gradings in low dimension
Enumerating Heintze groups
Bounds for non-vanishing \(\ell^{q,p}\) cohomology
Back Matter
A
Existence of a positive realization
B
Complete classification in low dimension
Overview
Dimension 2
Dimension 3
Dimension 4
Dimension 5
Dimension 6
Dimension 7
C
Notation
References
Authored in PreTeXt
A
Existence of a positive realization
B
Complete classification in low dimension
C
Notation
References