Skip to main content

References References

[1]
  
Serena Cicalò, Willem A. de Graaf, and Csaba Schneider, Six-dimensional nilpotent Lie algebras, Linear Algebra Appl. 436 (2012), no. 1, 163–189. MR 2859920
[2]
  
Serena Cicalò, Willem A. de Graaf, Csaba Schneider, and The GAP Team, LieAlgDB, a database of lie algebras, Version 2.2, https://gap-packages.github.io/liealgdb/, Apr 2018, Refereed GAP package.
[3]
  
Michael G. Cowling, Ville Kivioja, Enrico Le Donne, Sebastiano Nicolussi Golo, and Alessandro Ottazzi, From homogeneous metric spaces to Lie groups, arXiv e-prints (2017), arXiv:1705.09648.
[4]
  
Yves Cornulier, Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups, Bull. Soc. Math. France 144 (2016), no. 4, 693–744. MR 3562610
[5]
  
Yves de Cornulier, On the quasi-isometric classification of locally compact groups, New directions in locally compact groups, London Math. Soc. Lecture Note Ser., 447, Cambridge Univ. Press, Cambridge, (2018), pp. 275–342. MR 3793294
[6]
  
Yves Cornulier, On sublinear bilipschitz equivalence of groups, Ann. ENS 52 (2019), no. 5, 1201–1242.
[7]
  
Matias Carrasco Piaggio and Emiliano Sequeira, On quasi-isometry invariants associated to a Heintze group, Geom. Dedicata 189 (2017), 116. MR 3667336
[8]
  
Diego Conti and Federico A. Rossi, Construction of nice nilpotent Lie groups, J. Algebra 525 (2019), 311–340. MR 3911646
[9]
  
Willem A. de Graaf, Lie algebras: theory and algorithms, North-Holland Mathematical Library, 56, North-Holland Publishing Co., Amsterdam, (2000). MR 1743970
[10]
  
Willem A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra 309 (2007), no. 2, 640–653. MR 2303198
[11]
  
Willem A. de Graaf, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, (2017). MR 3675415
[12]
  
Alberto Elduque and Mikhail Kochetov, Gradings on simple Lie algebras, Mathematical Surveys and Monographs, 189, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, (2013). MR 3087174
[13]
  
Alberto Elduque, Fine gradings on simple classical Lie algebras, J. Algebra 324 (2010), no. 12, 3532–3571. MR 2735398
[14]
  
Gabriel Favre, Système de poids sur une algèbre de Lie nilpotente, Manuscripta Math. 9 (1973), 53–90. MR 349780
[15]
  
Shu-Cherng Fang and Sarat Puthenpura, Linear optimization and extensions: Theory and algorithms, Prentice Hall, (1993).
[16]
  
Ming-Peng Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), ProQuest LLC, Ann Arbor, MI, (1998), Thesis (Ph.D.)--University of Waterloo (Canada). MR 2698220
[17]
  
Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34. MR 353210
[19]
  
James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, (1978), Second printing, revised. MR 499562
[20]
  
Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, (2002). MR 1920389
[21]
  
Mikhail Kochetov, Gradings on finite-dimensional simple Lie algebras, Acta Appl. Math. 108 (2009), no. 1, 101–127. MR 2540960
[22]
  
Enrico Le Donne, A primer on Carnot groups: homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces 5 (2017), no. 1, 116137. MR 3742567
[23]
  
Louis Magnin, Adjoint and trivial cohomologies of nilpotent complex Lie algebras of dimension \(\leq 7\), Int. J. Math. Math. Sci. (2008), Art. ID 805305, 12. MR 2461422
[24]
  
Gabriel Pallier, Sublinear quasiconformality and the large-scale geometry of Heintze groups, Conform. Geom. Dyn. (2020), MR 4127909
[25]
  
Pierre Pansu and Michel Rumin, On the \(\ell^{q,p}\) cohomology of Carnot groups, Ann. H. Lebesgue 1 (2018), 267–295. MR 3963292
[26]
  
Jiří Patera and Hans Zassenhaus, On Lie gradings. I, Linear Algebra Appl. 112 (1989), 87–159. MR 976333
[27]
  
Dan Roozemond, Computing split maximal toral subalgebras of Lie algebras over fields of small characteristic, J. Symbolic Comput. 50 (2013), 335349. MR 2996884
[28]
  
Eberhard Siebert, Contractive automorphisms on locally compact groups, Math. Z. 191 (1986), no. 1, 73–90. MR 812604
[29]
  
Tonny A. Springer, Linear algebraic groups, second ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, (2009). MR 2458469
[30]
  
Francesca Tripaldi, The Rumin complex on nilpotent Lie groups, arXiv e-prints (2020), arXiv:2009.10154.